Random geometry in the path integral approach to quantum gravity
Three facets of Gravity, Humboldt University of Berlin
Exercises by T. Budd for tutorial on 10 May 2023

Exercise 1.1: Generating functions of maps with boundaries

Recall that the partition function of bipartite planar maps with face weights $q=\left(q_{1}, q_{2}, \ldots\right)$ is defined as

$$
\begin{equation*}
F_{0}(t, q)=\sum_{\text {maps } \mathfrak{m}} \frac{w(\mathfrak{m})}{|\operatorname{Aut}(\mathfrak{m})|}=\sum_{\text {rooted maps } \mathfrak{m}} \frac{w(\mathfrak{m})}{2|E(\mathfrak{m})|}, \quad w(\mathfrak{m})=t^{|V(\mathfrak{m})|} \prod_{f \in F(\mathfrak{m})} q_{\operatorname{deg} f / 2} \tag{1.1}
\end{equation*}
$$

a) Demonstrate that the disk function

$$
W^{(\ell)}(t, q)=\sum_{\substack{\text { roted map } \mathfrak{m} \\ \text { with } \operatorname{deg}\left(f_{r}\right)=2 \ell}} w^{\prime}(\mathfrak{m})
$$

where $w^{\prime}(\mathfrak{m})$ is the same as $w(\mathfrak{m})$ except that the root face is omitted in the product, is obtained from F_{0} via

$$
\begin{equation*}
W^{(\ell)}(t, q)=2 \ell \frac{\partial F_{0}}{\partial q_{\ell}} . \tag{1.2}
\end{equation*}
$$

Similarly, the generating functions $W^{\left(\ell_{1}, \ldots, \ell_{n}\right)}(t, q)$ of bipartite planar maps with n distinguished faces ("boundaries") of degrees $2 \ell_{1}, \ldots, 2 \ell_{n}$, each with a marked oriented edge in their contour, are obtained by taking further derivatives

$$
\begin{equation*}
W^{\left(\ell_{1}, \ldots, \ell_{n}\right)}(t, q)=2 \ell_{n} \frac{\partial W^{\left(\ell_{1}, \ldots, \ell_{n-1}\right)}}{\partial q_{\ell_{n}}} . \tag{1.3}
\end{equation*}
$$

In the lecture we saw that $F_{0}(t, q)$ could be rather explicitly expressed as

$$
\begin{equation*}
F_{0}(t, q)=\frac{1}{2} \int_{0}^{R} \frac{\mathrm{~d} r}{r}\left[\left(g_{q}(r)-t\right)^{2}-(r-t)^{2} \mathbb{1}_{\{r<t\}}\right] \tag{1.4}
\end{equation*}
$$

where

$$
\begin{equation*}
g_{q}(r)=r-\sum_{k=1}^{\infty} q_{k} \frac{1}{2}\binom{2 k}{k} r^{k}, \tag{1.5}
\end{equation*}
$$

and $R(t, q)=\frac{t}{1-q_{1}}+O\left(t^{2}\right)$ is the power series solution to $g_{q}(R)=t$.
b) Show that the generating functions for the disk $(n=1)$, the cylinder $(n=2)$, and the pair of pants ($n=3$) are given by the expressions

$$
\begin{aligned}
W^{\left(\ell_{1}\right)}(t, q) & =\binom{2 \ell_{1}}{\ell_{1}} \int_{0}^{R} \mathrm{~d} r g_{q}^{\prime}(r) r^{\ell_{1}}, \\
W^{\left(\ell_{1}, \ell_{2}\right)}(t, q) & =\frac{\ell_{1} \ell_{2}}{\ell_{1}+\ell_{2}}\binom{2 \ell_{1}}{\ell_{1}}\binom{2 \ell_{2}}{\ell_{2}} R^{\ell_{1}+\ell_{2}}, \\
W^{\left(\ell_{1}, \ell_{2}, \ell_{3}\right)}(t, q) & =\ell_{1} \ell_{2} \ell_{3}\binom{2 \ell_{1}}{\ell_{1}}\binom{2 \ell_{2}}{\ell_{2}}\binom{2 \ell_{3}}{\ell_{3}} R^{\ell_{1}+\ell_{2}+\ell_{3}-1} \frac{\partial R}{\partial t} .
\end{aligned}
$$

Hint: Use that $g_{q}(R)=t$ repeatedly!

Solution 1.1:

a) Performing the partial derivative explicitly, we find

$$
\begin{aligned}
2 \ell \frac{\partial F_{0}}{\partial q_{\ell}}(t, q) & =\sum_{\text {rooted maps } \mathfrak{m}} \frac{1}{2|E(\mathfrak{m})|} 2 \ell \frac{\partial w(\mathfrak{m})}{\partial q_{\ell}} \\
& =\sum_{\text {rooted maps } \mathfrak{m}} \frac{1}{2|E(\mathfrak{m})|} \sum_{\begin{array}{c}
\text { oriented edges } e \text { of } \mathfrak{m} \\
\text { belonging to face } f^{\prime} \text { of degree } 2 \ell
\end{array}} t^{|V(\mathfrak{m})|} \prod_{f \in F(\mathfrak{m}) \backslash\left\{f^{\prime}\right\}} q_{\operatorname{deg} f / 2} \\
& =\sum_{\substack{\text { rooted maps } \mathfrak{m} \\
\text { with } \operatorname{deg}\left(f_{\mathrm{r}}\right)=2 \ell}} \frac{1}{2|E(\mathfrak{m})|} \sum_{\text {oriented edges } e \text { of } \mathfrak{m}} t^{|V(\mathfrak{m})|} \prod_{f \in F(\mathfrak{m}) \backslash\left\{f_{\mathrm{r}}\right\}} q_{\operatorname{deg} f / 2} \\
& =\sum_{\substack{\text { rooted maps } \mathfrak{m} \\
\text { with } \operatorname{deg}\left(f_{\mathrm{r}}\right)=2 \ell}} w^{\prime}(\mathfrak{m})=W^{(\ell)}(t, q) .
\end{aligned}
$$

Here in the third equality we use that the oriented edge e plays the same role as the root edge, except for the constraint that $\operatorname{deg} f=2 \ell$, so we can interchange their roles in the summation.
b) The basic idea is that the partial derivatives on the integration bound R vanish in most situations, because $g_{q}(R)-t=0$. For the disk function we furthermore make use of an integration by parts,

$$
\begin{aligned}
W^{\left(\ell_{1}\right)}(t, q) & =2 \ell_{1} \frac{\partial F_{0}}{\partial q_{1}}=\int_{0}^{R} \mathrm{~d} r\left(t-g_{q}(r)\right)\binom{2 \ell_{1}}{\ell_{1}} \ell_{1} r^{\ell_{1}-1} \\
& =\binom{2 \ell_{1}}{\ell_{1}} \int_{0}^{R} \mathrm{~d} r g_{q}^{\prime}(r) r^{\ell_{1}} .
\end{aligned}
$$

For the cylinder, it is best to start from the penultimate expression of the disk function and take a derivative of the factor $t-g_{q}(r)$ in the integrand,

$$
\begin{aligned}
W^{\left(\ell_{1}, \ell_{2}\right)}(t, q) & =2 \ell_{2} \frac{\partial W^{\left(\ell_{1}\right)}}{\partial q_{\ell_{2}}}=\ell_{1} \ell_{2} \int_{0}^{R} \mathrm{~d} r\binom{2 \ell_{1}}{\ell_{1}}\binom{2 \ell_{2}}{\ell_{2}} r^{\ell_{1}+\ell_{2}-1} \\
& =\frac{\ell_{1} \ell_{2}}{\ell_{1}+\ell_{2}}\binom{2 \ell_{1}}{\ell_{1}}\binom{2 \ell_{2}}{\ell_{2}} R^{\ell_{1}+\ell_{2}} .
\end{aligned}
$$

For the pair of pants we first observe that

$$
0=\frac{\partial}{\partial q_{k}} g_{q}(R)=\frac{\partial g_{q}}{\partial q_{k}}(R)+g_{q}^{\prime}(R) \frac{\partial R}{\partial q_{k}} \quad \text { and } \quad 1=\frac{\partial}{\partial t} g_{q}(R)=g_{q}^{\prime}(R) \frac{\partial R}{\partial t},
$$

which together imply that

$$
\frac{\partial R}{\partial q_{k}}=-\frac{\partial g_{q}}{\partial q_{k}}(R) \frac{\partial R}{\partial t}=\frac{1}{2}\binom{2 k}{k} R^{k} \frac{\partial R}{\partial t} .
$$

Then we find

$$
\begin{aligned}
W^{\left(\ell_{1}, \ell_{2}, \ell_{3}\right)}(t, q) & =2 \ell_{3} \frac{\partial W^{\left(\ell_{1}, \ell_{2}\right)}}{\partial q_{\ell_{3}}}=2 \ell_{1} \ell_{2} \ell_{3}\binom{2 \ell_{1}}{\ell_{1}}\binom{2 \ell_{2}}{\ell_{2}} R^{\ell_{1}+\ell_{2}-1} \frac{\partial R}{\partial \ell_{\ell_{3}}} \\
& =\ell_{1} \ell_{2} \ell_{3}\binom{2 \ell_{1}}{\ell_{1}}\binom{2 \ell_{2}}{\ell_{2}}\binom{2 \ell_{3}}{\ell_{3}} R^{\ell_{1}+\ell_{2}+\ell_{3}-1} \frac{\partial R}{\partial t} .
\end{aligned}
$$

Exercise 1.2: Non-generic critical maps: an example

Non-generic critical maps naturally appear when considering two-dimensional quantum gravity coupled to matter. In this exercise we will look at a specific example, that can be understood as a discretization of two-dimensional quantum gravity coupled to a massless scalar field (matter central charge $c=1$). According to general wisdom this should be in the universality class of $\mathrm{LQG}_{\gamma=2}$ and therefore feature non-generic critical phenomena with index $\alpha=3 / 2$.

The discrete model is based on quadrangulations \mathfrak{q} with perimeter 2ℓ, i.e. planar maps with all faces of degree 4 except the root face which has degree 2ℓ. A (colourful) labeling $V(\mathfrak{q}) \rightarrow \mathbb{Z}$ of \mathfrak{q} is an assignment of integer labels to the vertices such that:

- the labels at the endpoints of each edge differ by 1 ;
- each face (except the root face) is incident to three different labels;
- the root face is labeled (alternatingly) by 0 and 1 such that the root edge points from label 0 to 1.

We denote the generating function of labeled quadrangulations by

$$
\begin{equation*}
Q^{(\ell)}(v)=\sum_{\substack{\text { labeled } \\ \text { quadrangulations } \mathfrak{q} \\ \text { of perimeter } 2 \ell}} v^{|V(\mathfrak{q})|} \tag{2.1}
\end{equation*}
$$

By convention $Q^{(0)}(v)=v$, counting the map consisting of a single vertex.
a) Keeping only the edges of the labelled quadrangulation \mathfrak{q} that have labels 0 and 1 and dropping all edges that are not in the connected component of the root edge, we obtain the gasket $g(\mathfrak{q})$ of \mathfrak{q}. Argue that for any (rooted bipartite) map \mathfrak{m} of perimeter 2ℓ, we have

$$
\begin{equation*}
\sum_{\substack{\text { labeled } \\ \text { quadrangulations } \mathfrak{q} \\ \text { of perimeter } 2 \ell \\ g(\mathfrak{q})=\mathfrak{m}}} v^{|V(\mathfrak{q})|}=\prod_{f \in F(\mathfrak{m}) \backslash\left\{f_{\mathrm{r}}\right\}} q_{\operatorname{deg} f / 2}(v), \quad q_{k}(v):=2 \sum_{p=0}^{\infty}\binom{p+k-1}{p} Q^{(p)}(v) \tag{2.2}
\end{equation*}
$$

Hence, $Q^{(\ell)}(v)$ is related to the disk function $W^{(\ell)}(t, q)$ of Boltzmann maps via $Q^{(\ell)}(v)=$ $W^{(\ell)}(v, q(v))$.
b) Show that the corresponding potential $V^{\prime}(x)=x-\sum_{k=1}^{\infty} q_{k} x^{2 k-1}$ and disk function $W(x)=$ $\sum_{\ell=0}^{\infty} W^{(\ell)} x^{-2 \ell-1}$ are related (for x in a sufficiently small neighbourhood of $1 / \sqrt{2}$) via

$$
\begin{equation*}
1-\frac{V^{\prime}(x)}{x}=2 \frac{W\left(\sqrt{1-x^{2}}\right)}{\sqrt{1-x^{2}}} \tag{2.3}
\end{equation*}
$$

Therefore $\left(W(x)-\frac{1}{2} V^{\prime}(x)\right) / x$ is symmetric under $x \rightarrow \sqrt{1-x^{2}}$.
By the one-cut assumption there exists a power series $M(x)$ and $R(v)$ such that

$$
\begin{equation*}
\frac{2}{x}\left(W(x)-\frac{1}{2} V^{\prime}(x)\right)=M(x) \sqrt{1-\frac{4 R(v)}{x^{2}}} \tag{2.4}
\end{equation*}
$$

A natural guess is that

$$
\begin{equation*}
M(x)=\sqrt{1-\frac{4 R}{1-x^{2}}} \tag{2.5}
\end{equation*}
$$

and this is confirmed by the explicit formula for $Q^{(\ell)}(v)$ obtained in [Bousquet-Mélou, Elvey Price, arXiv:1803.08265].
c) More challenging: Criticality of the gasket requires $M(x)$ to vanish at the branch cut $x=$ $\pm 2 \sqrt{R}$, so $R=1 / 8$. Show that in this case $W^{(\ell)} \sim \frac{1}{4 \pi} 2^{-\ell} \ell^{-2}$ as $\ell \rightarrow \infty$, and therefore the gasket is non-generic critical with exponent $\alpha=3 / 2$.

Solution 1.2:

a) It should be clear that the gasket of \mathfrak{q} is a rooted bipartite map, and that every bipartite rooted map can be obtained in this fashion (put a single vertex with label 2 in every face and connect it to the vertices with label 1.) Let's consider a single (non-root) face of the gasket of degree $2 k$. There are exactly two options for the k quadrangles of \mathfrak{q} that are adjacent to an edge of the gasket: either they all have label $0,1,0,-1$ or they have label $1,0,1,2$. Let's focus on the latter case. There can be p further quadrangles with labels $1,2,3,2$ that touch the gasket in a vertex of label 1. There are precisely $\binom{\ell+k-1}{\ell}$ ways to distribute these in between the k gaps. The sides with label 2 and 3 border a labeled quadrangulation of perimeter $2 p$, which after shifting the labels by -2 is of the same type as \mathfrak{q}. Hence the effective weight

$$
\sum_{p=0}^{\infty} 2\binom{p+k-1}{p} Q^{(p)}(v)
$$

per face of degree $2 k$ in the gasket.
b)

$$
\begin{aligned}
1-\frac{V^{\prime}(x)}{x} & =\sum_{k=1}^{\infty} x^{2 k-2} q_{k} \\
& =2 \sum_{p=0}^{\infty} Q^{(p)}(v) \sum_{k=1}^{\infty} x^{2 k-2}\binom{p+k-1}{p} \\
& =2 \sum_{p=0}^{\infty} Q^{(p)}(v)\left(1-x^{2}\right)^{-p-1} \\
& =2 \frac{W\left(\sqrt{1-x^{2}}\right)}{\sqrt{1-x^{2}}}
\end{aligned}
$$

So that

$$
\frac{W\left(\sqrt{1-x^{2}}\right)-\frac{1}{2} V^{\prime}\left(\sqrt{1-x^{2}}\right)}{\sqrt{1-x^{2}}}=\frac{W(x)-\frac{1}{2} V^{\prime}(x)}{x}
$$

c) $M(2 \sqrt{R})=\sqrt{1-4 R /(1-4 R)}=0$ when $R=1 / 8$. We should be careful that the left-hand side of (2.4) is convergent only on the circle $|x|=2 \sqrt{R}=1 / \sqrt{2}$, but that is enough to extract $W^{(\ell)}$ via contour integration,

$$
\begin{aligned}
W^{(\ell)} & =\frac{1}{2 \pi i} \int_{|x|=2 \sqrt{R}} x^{2 \ell} W(x) \mathrm{d} x \\
& =\frac{1}{2 \pi i} \int_{|x|=2 \sqrt{R}} x^{2 \ell} \frac{x}{2} \sqrt{1-\frac{1 / 2}{1-x^{2}}} \sqrt{1-\frac{1 / 2}{x^{2}}} \mathrm{~d} x \\
& =\frac{2^{-\ell}}{8 \pi} \int_{0}^{2 \pi} e^{i(2 \ell+2) \phi} \sqrt{1-\frac{1 / 2}{1-\frac{1}{2} e^{2 i \phi}}} \sqrt{1-e^{-2 i \phi}} \mathrm{~d} \phi \\
& =\frac{2^{-\ell}}{4 \pi} \int_{0}^{2 \pi} e^{i(2 \ell+2) \phi} \frac{|\sin \phi|}{\sqrt{2-e^{2 i \phi}}} \mathrm{~d} \phi
\end{aligned}
$$

The dominant contribution for large ℓ comes from the $|\sin \phi| / \sqrt{2-e^{2 i \phi}}=|\phi|+O\left(\phi^{2}\right)$, which leads to

$$
W^{(\ell)} \sim \frac{1}{4 \pi} 2^{-\ell} \ell^{-2}
$$

