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BEF™V theory

Definition

An n-graded symplectic manifold is a pair (M, @) where M is a graded manifold and w is a
closed nondegenerate two-form on M of homogenous degree n and parity n mod 2.

Definition

A differential graded manifold (shortly, a dg manifold) is a pair (M, Q) such that Q is a
cohomological vector field on a graded manifold M, i.e. an odd vector field @ of degree +1
satisfying [@, Q] = 0. (Note that @ defines a differential on C°°(M).)

Giovanni Canepa (SNSF/UW) Corner structure of GR Berlin 2/14



BEF™V theory

Definition

An n-graded symplectic manifold is a pair (M, @) where M is a graded manifold and w is a
closed nondegenerate two-form on M of homogenous degree n and parity n mod 2.

Definition

A differential graded manifold (shortly, a dg manifold) is a pair (M, Q) such that Q is a
cohomological vector field on a graded manifold M, i.e. an odd vector field @ of degree +1
satisfying [@, Q] = 0. (Note that @ defines a differential on C°°(M).)

Definition

A dg manifold with a compatiple symplectic structure, i.e., with Lgw = 0, is called a
differential graded symplectic manifold (shortly, a dg symplectic manifold).

Definition

We will always assume that @ is hamiltonian, namely, that there is an S € C°° (M )namiltonian
such that tgw = dS and {S, S} = 0 (the master equation). If w has degree n, then S has
degree m = n + 1. In this case, we call the triple (M, w, S) a BF™V manifold.
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P, structures from the BF?V formalism

In the case of a BF?V manifold, w is an odd symplectic form of degree +1. We start with
the finite-dimensional case.

Polarization

(M, w) is always symplectomorphic to a shifted cotangent bundle T*[1]N, with canonical
symplectic structure, for some graded manifold N . We call this choice of N a polarization.
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P, structures from the BF?V formalism
In the case of a BF?V manifold, w is an odd symplectic form of degree +1. We start with
the finite-dimensional case.

Polarization

(M, w) is always symplectomorphic to a shifted cotangent bundle T*[1]N, with canonical
symplectic structure, for some graded manifold N . We call this choice of N a polarization.

P, structure

The Poisson algebra of functions on T*[1]N can be canonically identified with the algebra of
multivector fields on N with the Schouten bracket. The function S, of degree +2, then
corresponds to a linear combination m = g 4+ w1 + 72 + - - -, where 7; is an i-vector field of
degree 2 — ¢ on N. The master equation {5, S} = 0 corresponds to the equations

[0, 1] =0,

1
[0, m2] + 5[7?1,7&] =0,
[0, m3] + [m1, m2] = 0,

1
[mo, m4] + 71, 73] + 5[7?277@] =0,

7 is called a P structure on N (this stands for Poisson structure up to coherent
homotopies). This structure is called curved if mg # 0.
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Multibrackets

Loo-algebra

The 7;s, applied to the differentials of ¢ functions on N, define multibrackets { }; on C°°(N)
which in turn define a (curved) Loo-algebra. Moreover, they are graded derivations w.r.t.
each argument. The multibrackets may also be defined as derived brackets

{flv"'7fi}i = [[[[[lefl]vfé]v}?fl] = P[[[[[[val}vfé]v]vfl}v

where P is the projection from multivector fields to functions. In particular, we have

{}o = mo, {f}r =m(f), {f,9}2 = [[72, f1, g]-
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Generalizations

The above structure may be generalized as follows.

Weak polarization

Suppose we have a splitting C°° (M) = p @ b into Poisson subalgebras with h abelian (i.e.,
p-pCp b-hCh {p,p} Cp, {h,b} =0). Let P be the projection C*°(M) — h. Then the

multibrackets
{fi,.- s fiti:==P{---{S, f}, fo},. .. }, fi}

make § into a Pso-algebra. We call the more general choice of (p, h) a weak polarization.

w degenerate

In this case we consider a splitting, with the above properties, of the —1-Poisson algebra of
hamiltonian functions: CP° (M)=p®h.

hamiltonian

Infinite-dimensional case

® M is symplectomorphic to a symplectic subbundle of T*[1]N, for some
infinite-dimensional graded manifold N.

® Not every function is hamiltonian. We can anyway define the derived brackets, as
before’ on C}?:miltonian(N) = COO(N) N C}?Zmiltonian(M)'
® The algebraic version for weak polarizations and its extension to the degenerate case

works verbatim as before.
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Summary

Input: Gauge field theory on manifold with corners.

Physics Mathematics
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Yang—Mills theory

BFV theory BF?V theory
o o0 = [ (6BSA + bdc) © o0 — [ 5coB
® $9= [, (cdaB+ %b[c, d) * 899 = [ %B[c, cl.

Poisson Structures

1. If we regard Fax as T*[1](Q2(9%) ® g), we then interpret S99 as the Poisson bivector
field

1 6 6
m=[ =B|—,—|-
s 2 0B 0B
2. The other natural polarization consists in realizing Fpy; as T*[1](C*°(0X)[1] ® g). In
this case we interpret S99 as the cohomological vector field

[ b
= 2207050’

which gives C°°(9%)[1] ® g the structure of a Poo-manifold.

Giovanni Canepa (SNSF/UW) Corner structure of GR Berlin 7/14



BF theory

In BF theory in 4 dimensions there are two classical fields: a g-connection A and a g-valued
2-form B. Here g is, a Lie algebra endowed with a nondegenerate, invariant inner product

BFV theory

* wd = [[(JAT 6c+BSA+5T5BT +6¢57F)
* 57=[x (3A4%[e,d + Bdac+ 7 (Fa+le, BT]) + ¢ (daB + [e,7F]) + A (BT + A¥9))

If ¥ has a boundary, we get a BF2V theory on 9%

BF2V theory

* w99 = [, (6Bdc+5T5A+35¢S6BY).

°
80 1 i 1
S = 5B[c,c]+TdAc+¢>(FA+[c,B D+A 5TT+B¢
ox
1 1
:/ (53[(3,(;] +7(daget [are)) + ¢ (FAO +daga+ o) + [C,B+]))
ox
1
+A (577 + B¢>
where Ag is a reference connection and a = A — Agp.
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Poisson structures

1. Lagrangian submanifold: {¢ = ¢ = 7 = 0}; This corresponds to having 7 = 71 + w2 with
= F AB ,
1 /(; (Fa+ ) —— 6 BT
1 6 4 1) 6 6 90 é 1) )
= “B|—,—|+—d — — |+ BT | —, — |+ A —
2 /32 (2 {53 53} toatosp e [50, 53} + [5B+ 53} 305 6a)
In other words, we split functions on Fyx, as p @ h with p the subalgebra of functions of
positive degree and h the subalgebra of functions of nonpositive degree, and the

construction turns ) into a differential graded Poisson algebra. The degree zero part fo,
consisting of functions on A(9%) @ Q?(0X) ® g > (A, B), is a Poisson subalgebra.

2. Lagrangian submanifold {c¢ = Bt =0,4 = Ap}; In this case we have m = mg + m1 + m2

with
7T0:/ (¢FAO+A< TT+B¢))
o
1 1
= d d
m= [ (drsp Fane )
1 5 0 65 0 1 6 o 6 0
71'2:/ (7B — 5| TT = = +7¢ N +¢77
s \27 | 6B’ 6B s 68| 2% 57 67 56’ 6B
This makes C'>® (E) into a curved Poo algebra.
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BF theory — Poisson structures II

There is a P, subalgebra generated by the following linear local observables:

Ja=/ oB, M5=/ Br, Ky=/ 6,
oy oy oy

where «, 8, v are g-valued 0-, 1-, and 2—forms, respectively.

Brackets

Oo = /aZ (¢>FA0 YA (%TT+B¢>))

{Jat1 = Ma, o, {Mph =Ka, g {Kih =0,
{JOM J&}Q = J[a,&]7 {JOH Mﬂ}z = M[a,6]7 {JOH K’Y}2 = K[a,’y]v
(Mg, Mz} = Ky 5, {Mp, Ky}o =0, {Ky, Ky}2=0.

Note that, when A = 0, the above algebra closes also under the nullary operation, since we
can write

o =Kry, -
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Gravity theory (Coframe formulation)

BFV theory

1 ; 1 1
§9 — / (cedwe + reeeF, + AeneFy, + g)mnAe5 + 5[0, chf — L‘gc'yJr + 5L§L5Fw’yT
Z .
1
+ [e, )\en}yT — L?(Aen)y]L — 5L[{:7§]€yT),

w? = / (e(Se(Sw +8csyT — (5w6(L5'yT) + xendyt + ngS(eyT)) .
)

Proposition
The BFEV theory Sgé = (]—'}‘20, S?,c, wla,c, Q‘z,c) is not 1-extendable.

BF2V theory
We consider the particular case £™ =0, A = 0.
* w99 = [ (§[c]6E — 15¢0P)
where E is a pure tensor and [c] denotes the equivalence class of elements c € Qg’;[l]
under the equivalence relation ¢+ d ~ ¢ for d € Qg’g[l] such that ed = 0.

° ng =/ ( [[e], [e]] E + e (E)dw, [c] — %L[&g]P + %ELELgFWO) .
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Poissons, structures - I

We choose {P = ¢ = 0} as the lagrangian submanifold. From the action we get
T = mo + 71 + w2 with

7T0:/ lEbgLEFWO,
r2
é 1 6
= Edw — 3 s |
e A(Lf 05E 2L[57§]5§)
SYRIEREAP
r2 6E 6F

These equip C°°(N) with the structure of a curved Poissons algebra.
We consider a subalgebra of linear functionals of the form:

1
J<p:/g0E, MY:/YLEE, KZ:/ 7ZL5L§E.
r r r2

The derived brackets are as follows

{}o =Kr,,»

{Joh = Ma, e, {My} = Kaq, v, {Kzh =0,

{J<P7J<p’}2 = J[#PN’,]’ {J¢7MY}2 :M[AP,Y]v {‘LﬂvKZ}? :K[(p,Z]v

{My, My1}2 = Kpy,y1, {My,Kz}2 =0, {Kz,Kz1}2=0.
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Poissons, structures - II

We choose {§ = ¢ = 0} as the lagrangian submanifold. From the action we get m = w2 with

176 4 1) 1 1
[ (=12 2E E)duy — — - - A A
m /F(z [6E’6E} tig (Bldeosp — 54 P 3B s s 0)

which equips C>°(N) with the structure of a Poisson algebra.
As before we can consider a subalgebra of linear functionals. Let

FX:/LxP and J¢:/<pE'.
r T

Their binary brackets are as follows:

e Jorte =Jpo;, {Je Fxte=Jdigduger  {Fx,Fxrte=Fx xn+dixiFo,-

Theorem

The BF?V structure of the tangent theory on a corner I' induces an Atiyah algebroid
structure on ad P @ TT.
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