Corner Structure of Four-Dimensional General Relativity in the Coframe Formalism

Giovanni Canepa

Swiss National Science Foundation – Universität Wien

May 10, 2023 Berlin, Three facets of Gravity

Definition

An *n*-graded symplectic manifold is a pair (M, ϖ) where M is a graded manifold and ϖ is a closed nondegenerate two-form on M of homogenous degree n and parity n mod 2.

Definition

A differential graded manifold (shortly, a dg manifold) is a pair (M, Q) such that Q is a cohomological vector field on a graded manifold M, i.e. an odd vector field Q of degree +1 satisfying [Q, Q] = 0. (Note that Q defines a differential on $C^{\infty}(M)$.)

Definition

An *n*-graded symplectic manifold is a pair (M, ϖ) where M is a graded manifold and ϖ is a closed nondegenerate two-form on M of homogenous degree n and parity n mod 2.

Definition

A differential graded manifold (shortly, a dg manifold) is a pair (M, Q) such that Q is a cohomological vector field on a graded manifold M, i.e. an odd vector field Q of degree +1 satisfying [Q, Q] = 0. (Note that Q defines a differential on $C^{\infty}(M)$.)

Definition

A dg manifold with a compatiple symplectic structure, i.e., with $L_Q \varpi = 0$, is called a differential graded symplectic manifold (shortly, a dg symplectic manifold).

Definition

We will always assume that Q is hamiltonian, namely, that there is an $S \in C^{\infty}(M)_{\text{hamiltonian}}$ such that $\iota_Q \varpi = dS$ and $\{S, S\} = 0$ (the master equation). If ϖ has degree n, then S has degree m = n + 1. In this case, we call the triple (M, ϖ, S) a BF^mV manifold.

P_{∞} structures from the BF²V formalism

In the case of a BF²V manifold, ϖ is an odd symplectic form of degree +1. We start with the finite-dimensional case.

Polarization

 (M,ϖ) is always symplectomorphic to a shifted cotangent bundle $T^*[1]N,$ with canonical symplectic structure, for some graded manifold N. We call this choice of N a polarization.

P_{∞} structures from the BF²V formalism

In the case of a BF²V manifold, ϖ is an odd symplectic form of degree +1. We start with the finite-dimensional case.

Polarization

 (M,ϖ) is always symplectomorphic to a shifted cotangent bundle $T^*[1]N,$ with canonical symplectic structure, for some graded manifold N. We call this choice of N a polarization.

P_{∞} structure

The Poisson algebra of functions on $T^*[1]N$ can be canonically identified with the algebra of multivector fields on N with the Schouten bracket. The function S, of degree +2, then corresponds to a linear combination $\pi = \pi_0 + \pi_1 + \pi_2 + \cdots$, where π_i is an *i*-vector field of degree 2 - i on N. The master equation $\{S, S\} = 0$ corresponds to the equations

$$\begin{aligned} [\pi_0,\pi_1] &= 0, \\ [\pi_0,\pi_2] + \frac{1}{2}[\pi_1,\pi_1] &= 0, \\ [\pi_0,\pi_3] + [\pi_1,\pi_2] &= 0, \\ [\pi_0,\pi_4] + [\pi_1,\pi_3] + \frac{1}{2}[\pi_2,\pi_2] &= 0, \end{aligned}$$

 π is called a P_{∞} structure on N (this stands for Poisson structure up to coherent homotopies). This structure is called curved if $\pi_0 \neq 0$.

Corner structure of GR

. . .

$L_\infty\text{-algebra}$

The π_i s, applied to the differentials of *i* functions on *N*, define multibrackets $\{ \}_i$ on $C^{\infty}(N)$ which in turn define a (curved) \mathcal{L}_{∞} -algebra. Moreover, they are graded derivations w.r.t. each argument. The multibrackets may also be defined as derived brackets

$${f_1, \ldots, f_i}_i = [[[\cdots [\pi_i, f_1], f_2], \ldots], f_i] = P[[[[[\cdots [\pi, f_1], f_2], \ldots], f_i]], f_i]$$

where P is the projection from multivector fields to functions. In particular, we have

$$\{\}_0 = \pi_0, \qquad \{f\}_1 = \pi_1(f), \qquad \{f, g\}_2 = [[\pi_2, f], g].$$

$L_\infty\text{-algebra}$

The π_i s, applied to the differentials of *i* functions on *N*, define multibrackets $\{ \}_i$ on $C^{\infty}(N)$ which in turn define a (curved) \mathcal{L}_{∞} -algebra. Moreover, they are graded derivations w.r.t. each argument. The multibrackets may also be defined as derived brackets

$${f_1, \ldots, f_i}_i = [[[\cdots [\pi_i, f_1], f_2], \ldots], f_i] = P[[[[[\cdots [\pi, f_1], f_2], \ldots], f_i]], f_i]$$

where P is the projection from multivector fields to functions. In particular, we have

$$\{\}_0 = \pi_0, \qquad \{f\}_1 = \pi_1(f), \qquad \{f, g\}_2 = [[\pi_2, f], g].$$

Generalizations

The above structure may be generalized as follows.

Weak polarization

Suppose we have a splitting $C^{\infty}(M) = \mathfrak{p} \oplus \mathfrak{h}$ into Poisson subalgebras with \mathfrak{h} abelian (i.e., $\mathfrak{p} \cdot \mathfrak{p} \subseteq \mathfrak{p}, \mathfrak{h} \cdot \mathfrak{h} \subseteq \mathfrak{h}, \{\mathfrak{p}, \mathfrak{p}\} \subseteq \mathfrak{p}, \{\mathfrak{h}, \mathfrak{h}\} = 0$). Let P be the projection $C^{\infty}(M) \to \mathfrak{h}$. Then the multibrackets

$$\{f_1, \dots, f_i\}_i := P\{\dots\{S, f_1\}, f_2\}, \dots\}, f_i\}$$

make \mathfrak{h} into a P_{∞} -algebra. We call the more general choice of $(\mathfrak{p}, \mathfrak{h})$ a weak polarization.

ϖ degenerate

In this case we consider a splitting, with the above properties, of the -1-Poisson algebra of hamiltonian functions: $C^{\infty}_{\text{hamiltonian}}(M) = \mathfrak{p} \oplus \mathfrak{h}$.

Infinite-dimensional case

- M is symplectomorphic to a symplectic subbundle of $T^*[1]N$, for some infinite-dimensional graded manifold N.
- Not every function is hamiltonian. We can anyway define the derived brackets, as before, on $C^{\infty}_{\text{hamiltonian}}(N) := C^{\infty}(N) \cap C^{\infty}_{\text{hamiltonian}}(M)$.
- The algebraic version for weak polarizations and its extension to the degenerate case works verbatim as before.

Summary

Input: Gauge field theory on manifold with corners.

BFV theory

- $\varpi^{\partial} = \int_{\Sigma} (\delta B \, \delta A + \delta b \, \delta c)$
- $S^{\partial} = \int_{\Sigma} \left(c \, \mathrm{d}_A B + \frac{1}{2} b[c,c] \right)$

BF^2V theory

•
$$\varpi^{\partial\partial} = \int_{\partial\Sigma} \delta c \, \delta B$$

•
$$S^{\partial \partial} = \int_{\Sigma} \frac{1}{2} B[c,c].$$

Poisson Structures

1. If we regard $\mathcal{F}_{\partial \Sigma}$ as $T^*[1](\Omega^2(\partial \Sigma) \otimes \mathfrak{g})$, we then interpret $S^{\partial \partial}$ as the Poisson bivector field

$$\pi_2 = \int_{\Sigma} \frac{1}{2} B\left[\frac{\delta}{\delta B}, \frac{\delta}{\delta B}\right]$$

2. The other natural polarization consists in realizing $\mathcal{F}_{\partial \Sigma}$ as $T^*[1](C^{\infty}(\partial \Sigma)[1] \otimes \mathfrak{g})$. In this case we interpret $S^{\partial \partial}$ as the cohomological vector field

$$\pi_1 = \int_{\Sigma} \frac{1}{2} [c, c] \frac{\delta}{\delta c},$$

which gives $C^{\infty}(\partial \Sigma)[1] \otimes \mathfrak{g}$ the structure of a P_{∞} -manifold.

BF theory

In BF theory in 4 dimensions there are two classical fields: a g-connection A and a g-valued 2-form B. Here g is, a Lie algebra endowed with a nondegenerate, invariant inner product

BFV theory

•
$$\varpi^{\partial} = \int_{\Sigma} (\delta A^+ \, \delta c + \delta B \, \delta A + \delta \tau \, \delta B^+ + \delta \phi \, \delta \tau^+)$$

•
$$S^{\partial} = \int_{\Sigma} \left(\frac{1}{2} A^{+}[c,c] + B \,\mathrm{d}_{A}c + \tau \left(F_{A} + [c,B^{+}] \right) + \phi \left(\mathrm{d}_{A}B^{+} + [c,\tau^{+}] \right) + \Lambda \left(B\tau + A^{+}\phi \right) \right)$$

If Σ has a boundary, we get a $\mathrm{BF}^2\mathrm{V}$ theory on $\partial\Sigma$

BF^2V theory

•
$$\varpi^{\partial \partial} = \int_{\partial \Sigma} (\delta B \, \delta c + \delta \tau \, \delta A + \delta \phi \, \delta B^+).$$

$$S^{\partial \partial} = \int_{\partial \Sigma} \left(\frac{1}{2} B[c,c] + \tau \, \mathrm{d}_A c + \phi \left(F_A + [c,B^+] \right) + \Lambda \left(\frac{1}{2} \tau \tau + B \phi \right) \right)$$
$$= \int_{\partial \Sigma} \left(\frac{1}{2} B[c,c] + \tau \left(\mathrm{d}_{A_0} c + [a,c] \right) + \phi \left(F_{A_0} + \mathrm{d}_{A_0} a + \frac{1}{2} [a,a] + [c,B^+] \right) \right)$$
$$+ \Lambda \left(\frac{1}{2} \tau \tau + B \phi \right)$$

where A_0 is a reference connection and $a = A - A_0$.

Poisson structures

1. Lagrangian submanifold: $\{c = \phi = \tau = 0\}$; This corresponds to having $\pi = \pi_1 + \pi_2$ with

$$\pi_{1} = \int_{\partial \Sigma} (F_{A} + \Lambda B) \frac{\delta}{\delta B^{+}},$$

$$\pi_{2} = \int_{\partial \Sigma} \left(\frac{1}{2} B \left[\frac{\delta}{\delta B}, \frac{\delta}{\delta B} \right] + \frac{\delta}{\delta a} d_{A_{0}} \frac{\delta}{\delta B} + a \left[\frac{\delta}{\delta a}, \frac{\delta}{\delta B} \right] + B^{+} \left[\frac{\delta}{\delta B^{+}}, \frac{\delta}{\delta B} \right] + \frac{1}{2} \Lambda \frac{\delta}{\delta a} \frac{\delta}{\delta a} \right)$$

In other words, we split functions on $\mathcal{F}_{\partial \Sigma}$ as $\mathfrak{p} \oplus \mathfrak{h}$ with \mathfrak{p} the subalgebra of functions of positive degree and \mathfrak{h} the subalgebra of functions of nonpositive degree, and the construction turns \mathfrak{h} into a differential graded Poisson algebra. The degree zero part \mathfrak{h}_0 , consisting of functions on $\mathcal{A}(\partial \Sigma) \oplus \Omega^2(\partial \Sigma) \otimes \mathfrak{g} \ni (A, B)$, is a Poisson subalgebra.

2. Lagrangian submanifold $\{c = B^{\dagger} = 0, A = A_0\}$; In this case we have $\pi = \pi_0 + \pi_1 + \pi_2$ with

$$\begin{split} \pi_0 &= \int_{\partial \Sigma} \left(\phi F_{A_0} + \Lambda \left(\frac{1}{2} \tau \tau + B \phi \right) \right), \\ \pi_1 &= \int_{\partial \Sigma} \left(\mathrm{d}_{A_0} \tau \frac{\delta}{\delta B} + \mathrm{d}_{A_0} \phi \frac{\delta}{\delta \tau} \right), \\ \pi_2 &= \int_{\partial \Sigma} \left(\frac{1}{2} B \left[\frac{\delta}{\delta B}, \frac{\delta}{\delta B} \right] + \tau \left[\frac{\delta}{\delta \tau}, \frac{\delta}{\delta B} \right] + \frac{1}{2} \phi \left[\frac{\delta}{\delta \tau}, \frac{\delta}{\delta \tau} \right] + \phi \left[\frac{\delta}{\delta \phi}, \frac{\delta}{\delta B} \right] \right). \end{split}$$

This makes $C^{\infty}(\widetilde{\mathcal{B}})$ into a curved P_{∞} algebra.

BF theory – Poisson structures II

There is a P_{∞} subalgebra generated by the following linear local observables:

$$J_{\alpha} = \int_{\partial \Sigma} \alpha B, \quad M_{\beta} = \int_{\partial \Sigma} \beta \tau, \quad K_{\gamma} = \int_{\partial \Sigma} \gamma \phi,$$

where α , β , γ are g-valued 0-, 1-, and 2-forms, respectively.

Brackets

$$\begin{split} \{\}_0 &= \int_{\partial \Sigma} \left(\phi F_{A_0} + \Lambda \, \left(\frac{1}{2} \tau \tau + B \phi \right) \right) \\ \{J_\alpha\}_1 &= M_{\mathbf{d}_{A_0} \alpha}, \quad \{M_\beta\}_1 = K_{\mathbf{d}_{A_0} \beta}, \quad \{K_\gamma\}_1 = 0, \\ \{J_\alpha, J_{\widetilde{\alpha}}\}_2 &= J_{[\alpha, \widetilde{\alpha}]}, \quad \{J_\alpha, M_\beta\}_2 = M_{[\alpha, \beta]}, \quad \{J_\alpha, K_\gamma\}_2 = K_{[\alpha, \gamma]}, \\ \{M_\beta, M_{\widetilde{\beta}}\}_2 &= K_{[\beta, \widetilde{\beta}]}, \quad \{M_\beta, K_\gamma\}_2 = 0, \quad \{K_\gamma, K_{\widetilde{\gamma}}\}_2 = 0. \end{split}$$

Note that, when $\Lambda = 0$, the above algebra closes also under the nullary operation, since we can write

$$\{\}_0 = K_{F_{A_0}}$$

Gravity theory (Coframe formulation)

BFV theory

$$\begin{split} S^{\partial} &= \int_{\Sigma} \left(c e \mathbf{d}_{\omega} e + \iota_{\xi} e e F_{\omega} + \lambda \epsilon_{n} e F_{\omega} + \frac{1}{3!} \lambda \epsilon_{n} \Lambda e^{3} + \frac{1}{2} [c,c] \gamma^{\dagger} - L_{\xi}^{\omega} c \gamma^{\dagger} + \frac{1}{2} \iota_{\xi} \iota_{\xi} F_{\omega} \gamma^{\dagger} \right. \\ &+ [c,\lambda\epsilon_{n}] y^{\dagger} - L_{\xi}^{\omega} (\lambda\epsilon_{n}) y^{\dagger} - \frac{1}{2} \iota_{[\xi,\xi]} e y^{\dagger} \right), \\ \varpi^{\partial} &= \int_{\Sigma} \left(e \delta e \delta \omega + \delta c \delta \gamma^{\dagger} - \delta \omega \delta (\iota_{\xi} \gamma^{\dagger}) + \delta \lambda \epsilon_{n} \delta y^{\dagger} + \iota_{\delta\xi} \delta (e y^{\dagger}) \right). \end{split}$$

Proposition

The BFV theory $\mathfrak{F}_{PC}^{(1)} = (\mathcal{F}_{PC}^{\partial}, S_{PC}^{\partial}, \varpi_{PC}^{\partial}, Q_{PC}^{\partial})$ is not 1-extendable.

BF^2V theory

We consider the particular case $\xi^m = 0$, $\lambda = 0$.

• $\varpi^{\partial \partial} = \int_{\Gamma} \left(\delta[c] \delta E - \iota_{\delta \xi} \delta P \right)$

where E is a pure tensor and [c] denotes the equivalence class of elements $c \in \Omega_{\partial \partial}^{0,2}[1]$ under the equivalence relation $c + d \sim c$ for $d \in \Omega_{\partial \partial}^{0,2}[1]$ such that ed = 0.

•
$$S_{\omega_0}^{\partial\partial} = \int_{\Gamma} \left(\frac{1}{2} [[c], [c]] E + \iota_{\xi}(E) \mathrm{d}_{\omega_0}[c] - \frac{1}{2} \iota_{[\xi, \xi]} P + \frac{1}{2} E \iota_{\xi} \iota_{\xi} F_{\omega_0} \right).$$

$Poisson_{\infty} \text{ structures - I}$

We choose $\{P=c=0\}$ as the lagrangian submanifold. From the action we get $\pi=\pi_0+\pi_1+\pi_2$ with

$$\begin{aligned} \pi_0 &= \int_{\Gamma} \frac{1}{2} E \iota_{\xi} \iota_{\xi} F_{\omega_0}, \\ \pi_1 &= \int_{\Gamma} \left(\iota_{\xi} E d_{\omega_0} \frac{\delta}{\delta E} - \frac{1}{2} \iota_{[\xi,\xi]} \frac{\delta}{\delta \xi} \right), \\ \pi_2 &= \int_{\Gamma} \frac{1}{2} \left[\frac{\delta}{\delta E}, \frac{\delta}{\delta E} \right] E. \end{aligned}$$

These equip $C^{\infty}(\mathcal{N})$ with the structure of a curved Poisson_{∞} algebra. We consider a subalgebra of linear functionals of the form:

$$J_{\varphi} = \int_{\Gamma} \varphi E, \qquad M_Y = \int_{\Gamma} Y \iota_{\xi} E, \qquad K_Z = \int_{\Gamma} \frac{1}{2} Z \iota_{\xi} \iota_{\xi} E.$$

The derived brackets are as follows

$$\begin{split} \{\}_0 &= K_{F\omega_0}, \\ \{J_{\varphi}\}_1 &= M_{\mathrm{d}\omega_0\,\varphi}, \\ \{J_{\varphi}, J_{\varphi'}\}_2 &= J_{[\varphi,\varphi']}, \\ \{M_Y, M_{Y'}\}_2 &= K_{[Y,Y']}, \\ \{M_Y, M_{Y'}\}_2 &= K_{[Y,Y']}, \\ \end{split}$$

$Poisson_{\infty} \text{ structures} - II$

We choose $\{\xi = c = 0\}$ as the lagrangian submanifold. From the action we get $\pi = \pi_2$ with

$$\pi_2 = \int_{\Gamma} \left(\frac{1}{2} \left[\frac{\delta}{\delta E}, \frac{\delta}{\delta E} \right] E + \iota_{\frac{\delta}{\delta P}}(E) \mathrm{d}_{\omega_0} \frac{\delta}{\delta E} - \frac{1}{2} \iota_{\left[\frac{\delta}{\delta P}, \frac{\delta}{\delta P}\right]} P + \frac{1}{2} E \iota_{\frac{\delta}{\delta P}} \iota_{\frac{\delta}{\delta P}} F_{\omega_0} \right),$$

which equips $C^{\infty}(\mathcal{N})$ with the structure of a Poisson algebra. As before we can consider a subalgebra of linear functionals. Let

$$F_X = \int_{\Gamma} \iota_X P$$
 and $J_{\varphi} = \int_{\Gamma} \varphi E$.

Their binary brackets are as follows:

$$\{J_{\varphi}, J_{\varphi'}\}_2 = J_{[\varphi, \varphi']}, \quad \{J_{\varphi}, F_X\}_2 = J_{\iota_X d_{\omega_0} \varphi}, \quad \{F_X, F_{X'}\}_2 = F_{[X, X']} + J_{\iota_X \iota_{X'} F_{\omega_0}}.$$

Theorem

The $BF^2 V$ structure of the tangent theory on a corner Γ induces an Atiyah algebroid structure on ad $P \oplus T\Gamma$.

References

I. A. Batalin and G. A. Vilkovisky. "Gauge algebra and quantization". *Physics Letters B* 102.1 (June 1981), pp. 27–31. DOI: 10.1016/0370-2693(81)90205-7.

Y. Kosmann-Schwarzbach. "From Poisson algebras to Gerstenhaber algebras". Annales de l'institut Fourier. Vol. 46. 5. 1996, pp. 1243–1274.

T. Voronov. "Higher derived brackets and homotopy algebras". *Journal of Pure and Applied Algebra* 202.1-3 (Nov. 2005), pp. 133–153. ISSN: 0022-4049. DOI: 10.1016/j.jpaa.2005.01.010.

F. Schätz. "BFV-Complex and Higher Homotopy Structures". Communications in Mathematical Physics 286.2 (Dec. 2008), p. 399. ISSN: 1432-0916.

A. S. Cattaneo, P. Mnev, and N. Reshetikhin. "Classical BV Theories on Manifolds with Boundary". *Communications in Mathematical Physics* 332.2 (2014), pp. 535–603. ISSN: 1432-0916. DOI: 10.1007/s00220-014-2145-3.

G. Canepa and A. S. Cattaneo. "Corner Structure of Four-Dimensional General Relativity in the Coframe Formalism". (2022). URL: https://arxiv.org/abs/2202.08684.

Thank you!