Corner Structure of Four-Dimensional General Relativity in the Coframe Formalism

Giovanni Canepa
Swiss National Science Foundation - Universität Wien
May 10, 2023 Berlin, Three facets of Gravity

$\mathrm{BF}^{m} \mathrm{~V}$ theory

Definition

An n-graded symplectic manifold is a pair (M, ϖ) where M is a graded manifold and ϖ is a closed nondegenerate two-form on M of homogenous degree n and parity $n \bmod 2$.

Definition

A differential graded manifold (shortly, a dg manifold) is a pair (M, Q) such that Q is a cohomological vector field on a graded manifold M, i.e. an odd vector field Q of degree +1 satisfying $[Q, Q]=0$. (Note that Q defines a differential on $C^{\infty}(M)$.)

$\mathrm{BF}^{m} \mathrm{~V}$ theory

Definition

An n-graded symplectic manifold is a pair (M, ϖ) where M is a graded manifold and ϖ is a closed nondegenerate two-form on M of homogenous degree n and parity $n \bmod 2$.

Definition

A differential graded manifold (shortly, a dg manifold) is a pair (M, Q) such that Q is a cohomological vector field on a graded manifold M, i.e. an odd vector field Q of degree +1 satisfying $[Q, Q]=0$. (Note that Q defines a differential on $C^{\infty}(M)$.)

Definition

A dg manifold with a compatiple symplectic structure, i.e., with $L_{Q} \varpi=0$, is called a differential graded symplectic manifold (shortly, a dg symplectic manifold).

Definition

We will always assume that Q is hamiltonian, namely, that there is an $S \in C^{\infty}(M)_{\text {hamiltonian }}$ such that $\iota_{Q} \varpi=\mathrm{d} S$ and $\{S, S\}=0$ (the master equation). If ϖ has degree n, then S has degree $m=n+1$. In this case, we call the triple (M, ϖ, S) a $\mathrm{BF}^{m} \mathrm{~V}$ manifold.

P_{∞} structures from the $\mathrm{BF}^{2} \mathrm{~V}$ formalism

In the case of a $\mathrm{BF}^{2} \mathrm{~V}$ manifold, ϖ is an odd symplectic form of degree +1 . We start with the finite-dimensional case.

Polarization

(M, ϖ) is always symplectomorphic to a shifted cotangent bundle $T^{*}[1] N$, with canonical symplectic structure, for some graded manifold N. We call this choice of N a polarization.

P_{∞} structures from the $\mathrm{BF}^{2} \mathrm{~V}$ formalism

In the case of a $\mathrm{BF}^{2} \mathrm{~V}$ manifold, ϖ is an odd symplectic form of degree +1 . We start with the finite-dimensional case.

Polarization

(M, ϖ) is always symplectomorphic to a shifted cotangent bundle $T^{*}[1] N$, with canonical symplectic structure, for some graded manifold N. We call this choice of N a polarization.

P_{∞} structure

The Poisson algebra of functions on $T^{*}[1] N$ can be canonically identified with the algebra of multivector fields on N with the Schouten bracket. The function S, of degree +2 , then corresponds to a linear combination $\pi=\pi_{0}+\pi_{1}+\pi_{2}+\cdots$, where π_{i} is an i-vector field of degree $2-i$ on N. The master equation $\{S, S\}=0$ corresponds to the equations

$$
\begin{aligned}
{\left[\pi_{0}, \pi_{1}\right] } & =0 \\
{\left[\pi_{0}, \pi_{2}\right]+\frac{1}{2}\left[\pi_{1}, \pi_{1}\right] } & =0 \\
{\left[\pi_{0}, \pi_{3}\right]+\left[\pi_{1}, \pi_{2}\right] } & =0 \\
{\left[\pi_{0}, \pi_{4}\right]+\left[\pi_{1}, \pi_{3}\right]+\frac{1}{2}\left[\pi_{2}, \pi_{2}\right] } & =0
\end{aligned}
$$

π is called a P_{∞} structure on N (this stands for Poisson structure up to coherent homotopies). This structure is called curved if $\pi_{0} \neq 0$.

Multibrackets

L_{∞}-algebra

The $\pi_{i} \mathrm{~s}$, applied to the differentials of i functions on N, define multibrackets $\left\}_{i}\right.$ on $C^{\infty}(N)$ which in turn define a (curved) L_{∞}-algebra. Moreover, they are graded derivations w.r.t. each argument. The multibrackets may also be defined as derived brackets

$$
\left\{f_{1}, \ldots, f_{i}\right\}_{i}=\left[\left[\left[\left[\cdots\left[\pi_{i}, f_{1}\right], f_{2}\right], \ldots\right], f_{i}\right]=P\left[\left[\left[\left[\left[\cdots\left[\pi, f_{1}\right], f_{2}\right], \ldots\right], f_{i}\right],\right.\right.\right.
$$

where P is the projection from multivector fields to functions. In particular, we have

$$
\left\}_{0}=\pi_{0}, \quad\{f\}_{1}=\pi_{1}(f), \quad\{f, g\}_{2}=\left[\left[\pi_{2}, f\right], g\right] .\right.
$$

Multibrackets

L_{∞}-algebra

The $\pi_{i} \mathrm{~s}$, applied to the differentials of i functions on N, define multibrackets $\left\}_{i}\right.$ on $C^{\infty}(N)$ which in turn define a (curved) L_{∞}-algebra. Moreover, they are graded derivations w.r.t. each argument. The multibrackets may also be defined as derived brackets

$$
\left\{f_{1}, \ldots, f_{i}\right\}_{i}=\left[\left[\left[\left[\cdots\left[\pi_{i}, f_{1}\right], f_{2}\right], \ldots\right], f_{i}\right]=P\left[\left[\left[\left[\left[\cdots\left[\pi, f_{1}\right], f_{2}\right], \ldots\right], f_{i}\right],\right.\right.\right.
$$

where P is the projection from multivector fields to functions. In particular, we have

$$
\left\}_{0}=\pi_{0}, \quad\{f\}_{1}=\pi_{1}(f), \quad\{f, g\}_{2}=\left[\left[\pi_{2}, f\right], g\right] .\right.
$$

Generalizations

The above structure may be generalized as follows.

Weak polarization

Suppose we have a splitting $C^{\infty}(M)=\mathfrak{p} \oplus \mathfrak{h}$ into Poisson subalgebras with \mathfrak{h} abelian (i.e., $\mathfrak{p} \cdot \mathfrak{p} \subseteq \mathfrak{p}, \mathfrak{h} \cdot \mathfrak{h} \subseteq \mathfrak{h},\{\mathfrak{p}, \mathfrak{p}\} \subseteq \mathfrak{p},\{\mathfrak{h}, \mathfrak{h}\}=0)$. Let P be the projection $C^{\infty}(M) \rightarrow \mathfrak{h}$. Then the multibrackets

$$
\left.\left.\left\{f_{1}, \ldots, f_{i}\right\}_{i}:=P\left\{\cdots\left\{S, f_{1}\right\}, f_{2}\right\}, \ldots\right\}, f_{i}\right\}
$$

make \mathfrak{h} into a P_{∞}-algebra. We call the more general choice of $(\mathfrak{p}, \mathfrak{h})$ a weak polarization.

ϖ degenerate

In this case we consider a splitting, with the above properties, of the -1 -Poisson algebra of hamiltonian functions: $C_{\text {hamiltonian }}^{\infty}(M)=\mathfrak{p} \oplus \mathfrak{h}$.

Infinite-dimensional case

- M is symplectomorphic to a symplectic subbundle of $T^{*}[1] N$, for some infinite-dimensional graded manifold N.
- Not every function is hamiltonian. We can anyway define the derived brackets, as before, on $C_{\text {hamiltonian }}^{\infty}(N):=C^{\infty}(N) \cap C_{\text {hamiltonian }}^{\infty}(M)$.
- The algebraic version for weak polarizations and its extension to the degenerate case works verbatim as before.

Summary

Input: Gauge field theory on manifold with corners.
Physics Mathematics

Yang-Mills theory

BFV theory

- $\varpi^{\partial}=\int_{\Sigma}(\delta B \delta A+\delta b \delta c)$
- $S^{\partial}=\int_{\Sigma}\left(c \mathrm{~d}_{A} B+\frac{1}{2} b[c, c]\right)$

$\mathrm{BF}^{2} \mathrm{~V}$ theory

- $\varpi^{\partial \partial}=\int_{\partial \Sigma} \delta c \delta B$
- $S^{\partial \partial}=\int_{\Sigma} \frac{1}{2} B[c, c]$.

Poisson Structures

1. If we regard $\mathcal{F}_{\partial \Sigma}$ as $T^{*}[1]\left(\Omega^{2}(\partial \Sigma) \otimes \mathfrak{g}\right)$, we then interpret $S^{\partial \partial}$ as the Poisson bivector field

$$
\pi_{2}=\int_{\Sigma} \frac{1}{2} B\left[\frac{\delta}{\delta B}, \frac{\delta}{\delta B}\right] .
$$

2. The other natural polarization consists in realizing $\mathcal{F}_{\partial \Sigma}$ as $T^{*}[1]\left(C^{\infty}(\partial \Sigma)[1] \otimes \mathfrak{g}\right)$. In this case we interpret $S^{\partial \partial}$ as the cohomological vector field

$$
\pi_{1}=\int_{\Sigma} \frac{1}{2}[c, c] \frac{\delta}{\delta c},
$$

which gives $C^{\infty}(\partial \Sigma)[1] \otimes \mathfrak{g}$ the structure of a P_{∞}-manifold.

BF theory

In $B F$ theory in 4 dimensions there are two classical fields: a \mathfrak{g}-connection A and a \mathfrak{g}-valued 2 -form B. Here \mathfrak{g} is, a Lie algebra endowed with a nondegenerate, invariant inner product

BFV theory

- $\varpi^{\partial}=\int_{\Sigma}\left(\delta A^{+} \delta c+\delta B \delta A+\delta \tau \delta B^{+}+\delta \phi \delta \tau^{+}\right)$
- $S^{\partial}=\int_{\Sigma}\left(\frac{1}{2} A^{+}[c, c]+B \mathrm{~d}_{A} c+\tau\left(F_{A}+\left[c, B^{+}\right]\right)+\phi\left(\mathrm{d}_{A} B^{+}+\left[c, \tau^{+}\right]\right)+\Lambda\left(B \tau+A^{+} \phi\right)\right)$

If Σ has a boundary, we get a $\mathrm{BF}^{2} \mathrm{~V}$ theory on $\partial \Sigma$

$\mathrm{BF}^{2} \mathrm{~V}$ theory

- $\varpi^{\partial \partial}=\int_{\partial \Sigma}\left(\delta B \delta c+\delta \tau \delta A+\delta \phi \delta B^{+}\right)$.

$$
\begin{aligned}
S^{\partial \partial}= & \int_{\partial \Sigma}\left(\frac{1}{2} B[c, c]+\tau \mathrm{d}_{A} c+\phi\left(F_{A}+\left[c, B^{+}\right]\right)+\Lambda\left(\frac{1}{2} \tau \tau+B \phi\right)\right) \\
= & \int_{\partial \Sigma}\left(\frac{1}{2} B[c, c]+\tau\left(\mathrm{d}_{A_{0}} c+[a, c]\right)+\phi\left(F_{A_{0}}+\mathrm{d}_{A_{0}} a+\frac{1}{2}[a, a]+\left[c, B^{+}\right]\right)\right) \\
& +\Lambda\left(\frac{1}{2} \tau \tau+B \phi\right)
\end{aligned}
$$

where A_{0} is a reference connection and $a=A-A_{0}$.

Poisson structures

1. Lagrangian submanifold: $\{c=\phi=\tau=0\}$; This corresponds to having $\pi=\pi_{1}+\pi_{2}$ with

$$
\begin{aligned}
& \pi_{1}=\int_{\partial \Sigma}\left(F_{A}+\Lambda B\right) \frac{\delta}{\delta B^{+}} \\
& \pi_{2}=\int_{\partial \Sigma}\left(\frac{1}{2} B\left[\frac{\delta}{\delta B}, \frac{\delta}{\delta B}\right]+\frac{\delta}{\delta a} \mathrm{~d}_{A_{0}} \frac{\delta}{\delta B}+a\left[\frac{\delta}{\delta a}, \frac{\delta}{\delta B}\right]+B^{+}\left[\frac{\delta}{\delta B^{+}}, \frac{\delta}{\delta B}\right]+\frac{1}{2} \Lambda \frac{\delta}{\delta a} \frac{\delta}{\delta a}\right)
\end{aligned}
$$

In other words, we split functions on $\mathcal{F}_{\partial \Sigma}$ as $\mathfrak{p} \oplus \mathfrak{h}$ with \mathfrak{p} the subalgebra of functions of positive degree and \mathfrak{h} the subalgebra of functions of nonpositive degree, and the construction turns \mathfrak{h} into a differential graded Poisson algebra. The degree zero part \mathfrak{h}_{0}, consisting of functions on $\mathcal{A}(\partial \Sigma) \oplus \Omega^{2}(\partial \Sigma) \otimes \mathfrak{g} \ni(A, B)$, is a Poisson subalgebra.
2. Lagrangian submanifold $\left\{c=B^{\dagger}=0, A=A_{0}\right\}$; In this case we have $\pi=\pi_{0}+\pi_{1}+\pi_{2}$ with

$$
\begin{aligned}
\pi_{0} & =\int_{\partial \Sigma}\left(\phi F_{A_{0}}+\Lambda\left(\frac{1}{2} \tau \tau+B \phi\right)\right) \\
\pi_{1} & =\int_{\partial \Sigma}\left(\mathrm{d}_{A_{0}} \tau \frac{\delta}{\delta B}+\mathrm{d}_{A_{0}} \phi \frac{\delta}{\delta \tau}\right) \\
\pi_{2} & =\int_{\partial \Sigma}\left(\frac{1}{2} B\left[\frac{\delta}{\delta B}, \frac{\delta}{\delta B}\right]+\tau\left[\frac{\delta}{\delta \tau}, \frac{\delta}{\delta B}\right]+\frac{1}{2} \phi\left[\frac{\delta}{\delta \tau}, \frac{\delta}{\delta \tau}\right]+\phi\left[\frac{\delta}{\delta \phi}, \frac{\delta}{\delta B}\right]\right) .
\end{aligned}
$$

This makes $C^{\infty}(\widetilde{\mathcal{B}})$ into a curved P_{∞} algebra.

BF theory - Poisson structures II

There is a P_{∞} subalgebra generated by the following linear local observables:

$$
J_{\alpha}=\int_{\partial \Sigma} \alpha B, \quad M_{\beta}=\int_{\partial \Sigma} \beta \tau, \quad K_{\gamma}=\int_{\partial \Sigma} \gamma \phi
$$

where α, β, γ are \mathfrak{g}-valued 0 -, 1 -, and 2 -forms, respectively.

Brackets

$$
\begin{gathered}
\left\}_{0}=\int_{\partial \Sigma}\left(\phi F_{A_{0}}+\Lambda\left(\frac{1}{2} \tau \tau+B \phi\right)\right)\right. \\
\left\{J_{\alpha}\right\}_{1}=M_{\mathrm{d}_{A_{0}}} \alpha, \quad\left\{M_{\beta}\right\}_{1}=K_{\mathrm{d}_{A_{0}} \beta}, \quad\left\{K_{\gamma}\right\}_{1}=0, \\
\left\{J_{\alpha}, J_{\tilde{\alpha}}\right\}_{2}=J_{[\alpha, \widetilde{\alpha}]}, \quad\left\{J_{\alpha}, M_{\beta}\right\}_{2}=M_{[\alpha, \beta]}, \quad\left\{J_{\alpha}, K_{\gamma}\right\}_{2}=K_{[\alpha, \gamma]}, \\
\left\{M_{\beta}, M_{\tilde{\beta}}\right\}_{2}=K_{[\beta, \widetilde{\beta}]}, \quad\left\{M_{\beta}, K_{\gamma}\right\}_{2}=0, \quad\left\{K_{\gamma}, K_{\tilde{\gamma}}\right\}_{2}=0 .
\end{gathered}
$$

Note that, when $\Lambda=0$, the above algebra closes also under the nullary operation, since we can write

$$
\left\}_{0}=K_{F_{A_{0}}} .\right.
$$

Gravity theory (Coframe formulation)

BFV theory

$$
\begin{aligned}
S^{\partial}= & \int_{\Sigma}\left(c e d_{\omega} e+\iota_{\xi} e e F_{\omega}+\lambda \epsilon_{n} e F_{\omega}+\frac{1}{3!} \lambda \epsilon_{n} \Lambda e^{3}+\frac{1}{2}[c, c] \gamma^{\dagger}-L_{\xi}^{\omega} c \gamma^{\dagger}+\frac{1}{2} \iota_{\xi} \iota_{\xi} F_{\omega} \gamma^{\dagger}\right. \\
& \left.+\left[c, \lambda \epsilon_{n}\right] y^{\dagger}-L_{\xi}^{\omega}\left(\lambda \epsilon_{n}\right) y^{\dagger}-\frac{1}{2} \iota[\xi, \xi] e y^{\dagger}\right), \\
\varpi^{\partial}= & \int_{\Sigma}\left(e \delta e \delta \omega+\delta c \delta \gamma^{\dagger}-\delta \omega \delta\left(\iota \xi \gamma^{\dagger}\right)+\delta \lambda \epsilon_{n} \delta y^{\dagger}+\iota_{\delta \xi} \delta\left(e y^{\dagger}\right)\right) .
\end{aligned}
$$

Proposition

The BFV theory $\mathfrak{F}_{P C}^{(1)}=\left(\mathcal{F}_{P C}^{\partial}, S_{P C}^{\partial}, \varpi_{P C}^{\partial}, Q_{P C}^{\partial}\right)$ is not 1-extendable.

$\mathrm{BF}^{2} \mathrm{~V}$ theory

We consider the particular case $\xi^{m}=0, \lambda=0$.

- $\varpi^{\partial \partial}=\int_{\Gamma}\left(\delta[c] \delta E-\iota_{\delta \xi} \delta P\right)$
where E is a pure tensor and [c] denotes the equivalence class of elements $c \in \Omega_{\partial \partial}^{0,2}[1]$ under the equivalence relation $c+d \sim c$ for $d \in \Omega_{\partial \partial}^{0,2}[1]$ such that $e d=0$.
- $\left.S_{\omega_{0}}^{\partial \partial}=\int_{\Gamma}\left(\frac{1}{2}[c c],[c]\right] E+\iota_{\xi}(E) \mathrm{d}_{\omega_{0}}[c]-\frac{1}{2} \iota[\xi, \xi] P+\frac{1}{2} E \iota \xi \iota \xi F_{\omega_{0}}\right)$.

Poisson $_{\infty}$ structures - I $^{\text {st }}$

We choose $\{P=c=0\}$ as the lagrangian submanifold. From the action we get $\pi=\pi_{0}+\pi_{1}+\pi_{2}$ with

$$
\begin{aligned}
& \pi_{0}=\int_{\Gamma} \frac{1}{2} E \iota_{\xi} \iota_{\xi} F_{\omega_{0}}, \\
& \pi_{1}=\int_{\Gamma}\left(\iota_{\xi} E \mathrm{~d}_{\omega_{0}} \frac{\delta}{\delta E}-\frac{1}{2} \iota[\xi, \xi] \frac{\delta}{\delta \xi}\right), \\
& \pi_{2}=\int_{\Gamma} \frac{1}{2}\left[\frac{\delta}{\delta E}, \frac{\delta}{\delta E}\right] E .
\end{aligned}
$$

These equip $C^{\infty}(\mathcal{N})$ with the structure of a curved Poisson $_{\infty}$ algebra. We consider a subalgebra of linear functionals of the form:

$$
J_{\varphi}=\int_{\Gamma} \varphi E, \quad M_{Y}=\int_{\Gamma} Y \iota_{\xi} E, \quad K_{Z}=\int_{\Gamma} \frac{1}{2} Z \iota_{\xi} \iota_{\xi} E .
$$

The derived brackets are as follows

$$
\begin{array}{lll}
\left\}_{0}=K_{F_{\omega_{0}}},\right. & \\
\left\{J_{\varphi}\right\}_{1}=M_{\mathrm{d}_{\omega_{0}} \varphi}, & \left\{M_{Y}\right\}_{1}=K_{\mathrm{d} \omega_{0} Y}, & \left\{K_{Z}\right\}_{1}=0, \\
\left\{J_{\varphi}, J_{\varphi^{\prime}}\right\}_{2}=J_{\left[\varphi, \varphi^{\prime}\right]}, & \left\{J_{\varphi}, M_{Y}\right\}_{2}=M_{[\varphi, Y]}, & \left\{J_{\varphi}, K_{Z}\right\}_{2}=K_{[\varphi, Z]}, \\
\left\{M_{Y}, M_{Y^{\prime}}\right\}_{2}=K_{\left[Y, Y^{\prime}\right]}, & \left\{M_{Y}, K_{Z}\right\}_{2}=0, & \left\{K_{Z}, K_{Z^{\prime}}\right\}_{2}=0 .
\end{array}
$$

Poisson $_{\infty}$ structures - II

We choose $\{\xi=c=0\}$ as the lagrangian submanifold. From the action we get $\pi=\pi_{2}$ with

$$
\pi_{2}=\int_{\Gamma}\left(\frac{1}{2}\left[\frac{\delta}{\delta E}, \frac{\delta}{\delta E}\right] E+\iota_{\frac{\delta}{\delta P}}(E) \mathrm{d}_{\omega_{0}} \frac{\delta}{\delta E}-\frac{1}{2} \iota_{\left[\frac{\delta}{\delta P}, \frac{\delta}{\delta P}\right]} P+\frac{1}{2} E \iota \frac{\delta}{\delta P} \iota_{\delta}^{\delta P} F_{\omega_{0}}\right),
$$

which equips $C^{\infty}(\mathcal{N})$ with the structure of a Poisson algebra.
As before we can consider a subalgebra of linear functionals. Let

$$
F_{X}=\int_{\Gamma} \iota_{X} P \quad \text { and } \quad J_{\varphi}=\int_{\Gamma} \varphi E
$$

Their binary brackets are as follows:

$$
\left\{J_{\varphi}, J_{\varphi^{\prime}}\right\}_{2}=J_{\left[\varphi, \varphi^{\prime}\right]}, \quad\left\{J_{\varphi}, F_{X}\right\}_{2}=J_{\iota_{X} \mathrm{~d}_{\omega_{0}} \varphi}, \quad\left\{F_{X}, F_{X^{\prime}}\right\}_{2}=F_{\left[X, X^{\prime}\right]}+J_{\iota_{X} \iota_{X^{\prime}} F_{\omega_{0}}}
$$

Theorem

The $B F^{2} V$ structure of the tangent theory on a corner Γ induces an Atiyah algebroid structure on $\operatorname{ad} P \oplus T \Gamma$.

References

I. A. Batalin and G. A. Vilkovisky. "Gauge algebra and quantization". Physics Letters B 102.1 (June 1981), pp. 27-31. DOI: 10.1016/0370-2693(81) 90205-7.
Y. Kosmann-Schwarzbach. "From Poisson algebras to Gerstenhaber algebras".

Annales de l'institut Fourier. Vol. 46. 5. 1996, pp. 1243-1274.
T. Voronov. "Higher derived brackets and homotopy algebras". Journal of Pure and Applied Algebra 202.1-3 (Nov. 2005), pp. 133-153. ISSN: 0022-4049. DOI: 10.1016/j.jpaa.2005.01.010.
F. Schätz. "BFV-Complex and Higher Homotopy Structures". Communications in Mathematical Physics 286.2 (Dec. 2008), p. 399. ISSN: 1432-0916.
A. S. Cattaneo, P. Mnev, and N. Reshetikhin. "Classical BV Theories on Manifolds with Boundary". Communications in Mathematical Physics 332.2 (2014), pp. 535-603. ISSN: 1432-0916. DOI: $10.1007 / \mathrm{s} 00220-014-2145-3$.
G. Canepa and A. S. Cattaneo. "Corner Structure of Four-Dimensional General Relativity in the Coframe Formalism". (2022). url:
https://arxiv.org/abs/2202.08684.

Thank you!

