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BFmV theory

Definition

An n-graded symplectic manifold is a pair (M,ϖ) where M is a graded manifold and ϖ is a
closed nondegenerate two-form on M of homogenous degree n and parity n mod 2.

Definition

A differential graded manifold (shortly, a dg manifold) is a pair (M,Q) such that Q is a
cohomological vector field on a graded manifold M , i.e. an odd vector field Q of degree +1
satisfying [Q,Q] = 0. (Note that Q defines a differential on C∞(M).)

Definition

A dg manifold with a compatiple symplectic structure, i.e., with LQϖ = 0, is called a
differential graded symplectic manifold (shortly, a dg symplectic manifold).

Definition

We will always assume that Q is hamiltonian, namely, that there is an S ∈ C∞(M)hamiltonian

such that ιQϖ = dS and {S, S} = 0 (the master equation). If ϖ has degree n, then S has
degree m = n+ 1. In this case, we call the triple (M,ϖ, S) a BFmV manifold.
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P∞ structures from the BF2V formalism

In the case of a BF2V manifold, ϖ is an odd symplectic form of degree +1. We start with
the finite-dimensional case.

Polarization

(M,ϖ) is always symplectomorphic to a shifted cotangent bundle T ∗[1]N , with canonical
symplectic structure, for some graded manifold N . We call this choice of N a polarization.

P∞ structure

The Poisson algebra of functions on T ∗[1]N can be canonically identified with the algebra of
multivector fields on N with the Schouten bracket. The function S, of degree +2, then
corresponds to a linear combination π = π0 + π1 + π2 + · · · , where πi is an i-vector field of
degree 2− i on N . The master equation {S, S} = 0 corresponds to the equations

[π0, π1] = 0,

[π0, π2] +
1

2
[π1, π1] = 0,

[π0, π3] + [π1, π2] = 0,

[π0, π4] + [π1, π3] +
1

2
[π2, π2] = 0,

. . .

π is called a P∞ structure on N (this stands for Poisson structure up to coherent
homotopies). This structure is called curved if π0 ̸= 0.
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Multibrackets

L∞-algebra

The πis, applied to the differentials of i functions on N , define multibrackets { }i on C∞(N)
which in turn define a (curved) L∞-algebra. Moreover, they are graded derivations w.r.t.
each argument. The multibrackets may also be defined as derived brackets

{f1, . . . , fi}i = [[[[· · · [πi, f1], f2], . . . ], fi] = P [[[[[· · · [π, f1], f2], . . . ], fi],

where P is the projection from multivector fields to functions. In particular, we have

{}0 = π0, {f}1 = π1(f), {f, g}2 = [[π2, f ], g].
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Generalizations

The above structure may be generalized as follows.

Weak polarization

Suppose we have a splitting C∞(M) = p⊕ h into Poisson subalgebras with h abelian (i.e.,
p · p ⊆ p, h · h ⊆ h, {p, p} ⊆ p, {h, h} = 0). Let P be the projection C∞(M) → h. Then the
multibrackets

{f1, . . . , fi}i := P{· · · {S, f1}, f2}, . . . }, fi}

make h into a P∞-algebra. We call the more general choice of (p, h) a weak polarization.

ϖ degenerate

In this case we consider a splitting, with the above properties, of the −1-Poisson algebra of
hamiltonian functions: C∞

hamiltonian(M) = p⊕ h.

Infinite-dimensional case

• M is symplectomorphic to a symplectic subbundle of T ∗[1]N , for some
infinite-dimensional graded manifold N .

• Not every function is hamiltonian. We can anyway define the derived brackets, as
before, on C∞

hamiltonian(N) := C∞(N) ∩ C∞
hamiltonian(M).

• The algebraic version for weak polarizations and its extension to the degenerate case
works verbatim as before.
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Summary

Input: Gauge field theory on manifold with corners.

Physics Mathematics

Bulk BV Theory

Boundary Σ, RPS BFV Theory

Corner ∂Σ BF2V Theory deg. BF2V Theory

Observables P∞-structure on C∞(∂Σ)

KT+reduction

KT+reduction

KT

Polarization

p⊕h

Giovanni Canepa (SNSF/UW) Corner structure of GR Berlin 6 / 14



Yang–Mills theory

BFV theory

• ϖ∂ =
∫
Σ(δB δA+ δb δc)

• S∂ =
∫
Σ

(
cdAB + 1

2
b[c, c]

)
BF2V theory

• ϖ∂∂ =
∫
∂Σ δc δB

• S∂∂ =
∫
Σ

1
2
B[c, c].

Poisson Structures

1. If we regard F∂Σ as T ∗[1](Ω2(∂Σ)⊗ g), we then interpret S∂∂ as the Poisson bivector
field

π2 =

∫
Σ

1

2
B

[
δ

δB
,

δ

δB

]
.

2. The other natural polarization consists in realizing F∂Σ as T ∗[1](C∞(∂Σ)[1]⊗ g). In
this case we interpret S∂∂ as the cohomological vector field

π1 =

∫
Σ

1

2
[c, c]

δ

δc
,

which gives C∞(∂Σ)[1]⊗ g the structure of a P∞-manifold.
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BF theory

In BF theory in 4 dimensions there are two classical fields: a g-connection A and a g-valued
2-form B. Here g is, a Lie algebra endowed with a nondegenerate, invariant inner product

BFV theory

• ϖ∂ =
∫
Σ(δA

+ δc+ δB δA+ δτ δB+ + δϕ δτ+)

• S∂ =
∫
Σ

(
1
2
A+[c, c] +B dAc+ τ (FA + [c, B+]) + ϕ (dAB+ + [c, τ+]) + Λ (Bτ +A+ϕ)

)
If Σ has a boundary, we get a BF2V theory on ∂Σ

BF2V theory

• ϖ∂∂ =
∫
∂Σ(δB δc+ δτ δA+ δϕ δB+).

•

S∂∂ =

∫
∂Σ

(
1

2
B[c, c] + τ dAc+ ϕ (FA + [c, B+]) + Λ

(
1

2
ττ +Bϕ

))
=

∫
∂Σ

(
1

2
B[c, c] + τ (dA0c+ [a, c]) + ϕ

(
FA0 + dA0a+

1

2
[a, a] + [c, B+]

))
+ Λ

(
1

2
ττ +Bϕ

)
where A0 is a reference connection and a = A−A0.
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Poisson structures

1. Lagrangian submanifold: {c = ϕ = τ = 0}; This corresponds to having π = π1 + π2 with

π1 =

∫
∂Σ

(FA + ΛB)
δ

δB+
,

π2 =

∫
∂Σ

(
1

2
B

[
δ

δB
,

δ

δB

]
+

δ

δa
dA0

δ

δB
+ a

[
δ

δa
,

δ

δB

]
+B+

[
δ

δB+
,

δ

δB

]
+

1

2
Λ

δ

δa

δ

δa

)
.

In other words, we split functions on F∂Σ as p⊕ h with p the subalgebra of functions of
positive degree and h the subalgebra of functions of nonpositive degree, and the
construction turns h into a differential graded Poisson algebra. The degree zero part h0,
consisting of functions on A(∂Σ)⊕ Ω2(∂Σ)⊗ g ∋ (A,B), is a Poisson subalgebra.

2. Lagrangian submanifold {c = B† = 0, A = A0}; In this case we have π = π0 + π1 + π2

with

π0 =

∫
∂Σ

(
ϕFA0 + Λ

(
1

2
ττ +Bϕ

))
,

π1 =

∫
∂Σ

(
dA0

τ
δ

δB
+ dA0

ϕ
δ

δτ

)
,

π2 =

∫
∂Σ

(
1

2
B

[
δ

δB
,

δ

δB

]
+ τ

[
δ

δτ
,

δ

δB

]
+

1

2
ϕ

[
δ

δτ
,
δ

δτ

]
+ ϕ

[
δ

δϕ
,

δ

δB

])
.

This makes C∞(B̃) into a curved P∞ algebra.
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BF theory – Poisson structures II

There is a P∞ subalgebra generated by the following linear local observables:

Jα =

∫
∂Σ

αB, Mβ =

∫
∂Σ

βτ, Kγ =

∫
∂Σ

γϕ,

where α, β, γ are g-valued 0-, 1-, and 2−forms, respectively.

Brackets

{}0 =

∫
∂Σ

(
ϕFA0 + Λ

(
1

2
ττ +Bϕ

))
{Jα}1 = MdA0

α, {Mβ}1 = KdA0
β , {Kγ}1 = 0,

{Jα, Jα̃}2 = J[α,α̃], {Jα,Mβ}2 = M[α,β], {Jα,Kγ}2 = K[α,γ],

{Mβ ,Mβ̃
}2 = K

[β,β̃]
, {Mβ ,Kγ}2 = 0, {Kγ ,Kγ̃}2 = 0.

Note that, when Λ = 0, the above algebra closes also under the nullary operation, since we
can write

{}0 = KFA0
.
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Gravity theory (Coframe formulation)

BFV theory

S∂ =

∫
Σ

(
cedωe+ ιξeeFω + λϵneFω +

1

3!
λϵnΛe

3 +
1

2
[c, c]γ† − Lω

ξ cγ
† +

1

2
ιξιξFωγ

†

+ [c, λϵn]y
† − Lω

ξ (λϵn)y
† −

1

2
ι[ξ,ξ]ey

†
)
,

ϖ∂ =

∫
Σ

(
eδeδω + δcδγ† − δωδ(ιξγ

†) + δλϵnδy
† + ιδξδ(ey

†)
)
.

Proposition

The BFV theory F
(1)
PC = (F∂

PC , S∂
PC , ϖ∂

PC , Q∂
PC) is not 1-extendable.

BF2V theory

We consider the particular case ξm = 0, λ = 0.

• ϖ∂∂ =
∫
Γ

(
δ[c]δE − ιδξδP

)
where E is a pure tensor and [c] denotes the equivalence class of elements c ∈ Ω0,2

∂∂ [1]

under the equivalence relation c+ d ∼ c for d ∈ Ω0,2
∂∂ [1] such that ed = 0.

• S∂∂
ω0

=
∫
Γ

(
1
2
[[c], [c]]E + ιξ(E)dω0 [c]− 1

2
ι[ξ,ξ]P + 1

2
EιξιξFω0

)
.
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Poisson∞ structures - I

We choose {P = c = 0} as the lagrangian submanifold. From the action we get
π = π0 + π1 + π2 with

π0 =

∫
Γ

1

2
EιξιξFω0 ,

π1 =

∫
Γ

(
ιξEdω0

δ

δE
−

1

2
ι[ξ,ξ]

δ

δξ

)
,

π2 =

∫
Γ

1

2

[
δ

δE
,

δ

δE

]
E.

These equip C∞(N ) with the structure of a curved Poisson∞ algebra.
We consider a subalgebra of linear functionals of the form:

Jφ =

∫
Γ
φE, MY =

∫
Γ
Y ιξE, KZ =

∫
Γ

1

2
ZιξιξE.

The derived brackets are as follows

{}0 = KFω0
,

{Jφ}1 = Mdω0φ, {MY }1 = Kdω0Y , {KZ}1 = 0,

{Jφ, Jφ′}2 = J[φ,φ′], {Jφ,MY }2 = M[φ,Y ], {Jφ,KZ}2 = K[φ,Z],

{MY ,MY ′}2 = K[Y,Y ′], {MY ,KZ}2 = 0, {KZ ,KZ′}2 = 0.
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Poisson∞ structures - II

We choose {ξ = c = 0} as the lagrangian submanifold. From the action we get π = π2 with

π2 =

∫
Γ

(
1

2

[
δ

δE
,

δ

δE

]
E + ι δ

δP
(E)dω0

δ

δE
−

1

2
ι
[ δ
δP

, δ
δP

]
P +

1

2
Eι δ

δP
ι δ
δP

Fω0

)
,

which equips C∞(N ) with the structure of a Poisson algebra.
As before we can consider a subalgebra of linear functionals. Let

FX =

∫
Γ
ιXP and Jφ =

∫
Γ
φE.

Their binary brackets are as follows:

{Jφ, Jφ′}2 = J[φ,φ′], {Jφ, FX}2 = JιXdω0φ, {FX , FX′}2 = F[X,X′] + JιX ιX′Fω0
.

Theorem

The BF2V structure of the tangent theory on a corner Γ induces an Atiyah algebroid
structure on adP ⊕ TΓ.
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