## Slice decomposition of hypermaps

Marie Albenque (CNRS, IRIF, Université Paris cité) joint work with Jérémie Bouttier (CEA, Saclay)

## Hypermaps



An hypermap is a planar map in which the faces can be properly bicolored.

Why "hypermap" ?
$\rightarrow$ Extend the notion of hypergraphs to maps.
$\rightarrow$ Blue faces can been as hyper-edges which connect several vertices.

## Hypermaps



An hypermap is a planar map in which the faces can be properly bicolored.

Why "hypermap" ?
$\rightarrow$ Extend the notion of hypergraphs to maps.
$\rightarrow$ Blue faces can been as hyper-edges which connect several vertices.

Hypermaps generalize classical maps:

## Hypermaps



An hypermap is a planar map in which the faces can be properly bicolored.

Why "hypermap" ?
$\rightarrow$ Extend the notion of hypergraphs to maps.
$\rightarrow$ Blue faces can been as hyper-edges which connect several vertices.

To each hypermap m, we associate the weight:

$$
w(\mathrm{~m}):=t^{\mid \text {vertices of } \mathrm{m} \mid} \prod_{f \in F^{\circ}} t_{\operatorname{deg}(f)}^{\circ} \prod_{f \in F^{\bullet}} t_{\operatorname{deg}(f)}^{\bullet}
$$

Goal of this talk: enumerate weighted hypermaps bijectively.

## Hypermaps



An hypermap is a planar map in which the faces can be properly bicolored.

Why "hypermap" ?
$\rightarrow$ Extend the notion of hypergraphs to maps.
$\rightarrow$ Blue faces can been as hyper-edges which connect several vertices.

To each hypermap m, we associate the weight:

$$
w(\mathrm{~m}):=t^{\mid \text {vertices of } \mathrm{m} \mid} \prod_{f \in F^{\circ}} t_{\operatorname{deg}(f)}^{\circ} \prod_{f \in F^{\bullet}} t_{\operatorname{deg}(f)}^{\bullet}
$$

Goal of this talk: enumerate weighted hypermaps bijectively.

## Important tool:

Edges of an hypermap can be canonically oriented, by requiring that the contour of each face is a directed cycle (the color of the face determines the orientation of the cycle).

## Hypermaps



An hypermap is a planar map in which the faces can be properly bicolored.

Why "hypermap" ?
$\rightarrow$ Extend the notion of hypergraphs to maps.
$\rightarrow$ Blue faces can been as hyper-edges which connect several vertices.

To each hypermap m, we associate the weight:

$$
w(\mathrm{~m}):=t^{\mid \text {vertices of } \mathrm{m} \mid} \prod_{f \in F^{\circ}} t_{\operatorname{deg}(f)}^{\circ} \prod_{f \in F^{\bullet}} t_{\operatorname{deg}(f)}^{\bullet}
$$

Goal of this talk: enumerate weighted hypermaps bijectively.

## Important tool:

Edges of an hypermap can be canonically oriented, by requiring that the contour of each face is a directed cycle (the color of the face determines the orientation of the cycle).

## Motivations and existing litterature

Hypermaps generalize maps, also additional motivations from theoretical physics:

- 2-matrix models ([Itzykson-Zuber 1980], [Eynard et al. 2000's])
- Ising model on maps ([Kazakov 1986])
- Integrability in the context of the 2-Toda hierarchy


## Motivations and existing litterature

Hypermaps generalize maps, also additional motivations from theoretical physics:

- 2-matrix models ([Itzykson-Zuber 1980], [Eynard et al. 2000's])
- Ising model on maps ([Kazakov 1986])
- Integrability in the context of the 2-Toda hierarchy

But also in combinatorics:

- Bijections with blossoming trees, [Bousquet-Mélou - Schaeffer 2002]
- Bijections with mobiles, [Bouttier - Di Francesco - Guitter 2004]


## Motivations and existing litterature

Hypermaps generalize maps, also additional motivations from theoretical physics:

- 2-matrix models ([Itzykson-Zuber 1980], [Eynard et al. 2000's])
- Ising model on maps ([Kazakov 1986])
- Integrability in the context of the 2-Toda hierarchy


## But also in combinatorics:

- Bijections with blossoming trees, [Bousquet-Mélou - Schaeffer 2002]
- Bijections with mobiles, [Bouttier - Di Francesco - Guitter 2004]

Our Goal: Obtain some bijective proofs for the enumerative formulas of hypermaps with boundaries obtained previously by algebraic manipulations [Eynard's book 2016].

one monochromatic boundary

two monochromatic boundaries


## Motivations and existing litterature

Hypermaps generalize maps, also additional motivations from theoretical physics:

- 2-matrix models ([Itzykson-Zuber 1980], [Eynard et al. 2000's])
- Ising model on maps ([Kazakov 1986])
- Integrability in the context of the 2-Toda hierarchy


## But also in combinatorics:

- Bijections with blossoming trees, [Bousquet-Mélou - Schaeffer 2002]
- Bijections with mobiles, [Bouttier - Di Francesco - Guitter 2004]

Our Goal: Obtain some bijective proofs for the enumerative formulas of hypermaps with boundaries obtained previously by algebraic manipulations [Eynard's book 2016].

one monochromatic boundary

two monochromatic boundaries


How ? By extending to hypermaps the method of slice decomposition introduced in [Bouttier, Guitter 2010].

First things first: Pointed disks


First things first: Pointed disks


## First things first: Pointed disks


$r$

A (hyper)-slice is an hypermap with a boundary and 3 marked corners $l, r$ and $o$ such that:

- the left boundary from $l$ to $o$ is a geodesic (green edges)
- the right boundary from $r$ to $o$ is the unique geodesic (red edges),
- the base (between $l$ and $r$ ) is either oriented from $l$ to $r$ ( $=$ "type A") or from $r$ to $l$ (="type B") (black edges),
- and the left and the right boundaries intersect only at $o$.


## First things first: Pointed disks



A (hyper)-slice is an hypermap with a boundary and 3 marked corners $l, r$ and $o$ such that:

- the left boundary from $l$ to $o$ is a geodesic (green edges)
- the right boundary from $r$ to $o$ is the unique geodesic (red edges),
- the base (between $l$ and $r$ ) is either oriented from $l$ to $r$ ( $=$ "type A") or from $r$ to $l$ (="type B") (black edges),
- and the left and the right boundaries intersect only at $o$.

The inclination of a slice is a difference between the length of the left and the right boundaries.

## First things first: Pointed disks



A (hyper)-slice is an hypermap with a boundary and 3 marked corners $l, r$ and $o$ such that:

- the left boundary from $l$ to $o$ is a geodesic (green edges)
- the right boundary from $r$ to $o$ is the unique geodesic (red edges),
- the base (between $l$ and $r$ ) is either oriented from $l$ to $r$ ( $=$ "type A") or from $r$ to $l$ (="type B") (black edges),
- and the left and the right boundaries intersect only at $o$.

The inclination of a slice is a difference between the length of the left and the right boundaries.

## Why does this help ? Decomposition of slices

Slices can be further decomposed into "elementary slices":


## Why does this help ? Decomposition of slices

Slices can be further decomposed into "elementary slices":


## Why does this help? Decomposition of slices

Slices can be further decomposed into "elementary slices":


Type A / B slice with base of length $p$ and inclination $k$

weight-preserving


## Why does this help? Decomposition of slices

Slices can be further decomposed into "elementary slices":

weight of a slice: $\bar{w}(\mathrm{~s}):=t^{\mid \text {vertices of s not incident to the right boundary } \mid} \prod_{f \in F_{\mathrm{inn}}^{\circ}} t_{\operatorname{deg}(f)}^{\circ} \prod_{f \in F_{\mathrm{inn}}^{\bullet}} t_{\mathrm{deg}(f)}^{\bullet}$
Elementary slice: slice with a base of length 1 .

Why does this help ?? Decomposition of elementary slices

## Generating series of elementary slices

For $k \in \mathbb{Z}, \quad a_{k}, b_{k}:=$ generating series of elementary slices of type $\mathrm{A} / \mathrm{B}$ and inclination $k$.

inclinatton $\begin{gathered}\text { tape } \\ =-1\end{gathered}$

inclination $=0$


## Generating series of elementary slices

For $k \in \mathbb{Z}, \quad a_{k}, b_{k}:=$ generating series of elementary slices of type $\mathrm{A} / \mathrm{B}$ and inclination $k$.


First properties: $\bullet a_{k}=b_{-k}=0$ for $k>1$.

- $b_{-1}=1$


## Generating series of elementary slices

For $k \in \mathbb{Z}, \quad a_{k}, b_{k}:=$ generating series of elementary slices of type $\mathrm{A} / \mathrm{B}$ and inclination $k$.

inclinatton $\underset{=-1}{ }$

inclination $=0$


First properties: $\bullet a_{k}=b_{-k}=0$ for $k>1$.

- $b_{-1}=1$

We combine all these quantities into two Laurent series:

$$
x(z):=\sum_{k \leq 1} a_{k} z^{k}, \quad y(z):=\sum_{k \geq-1} b_{k} z^{k}
$$

Main result:
All generating series of discussed hypermaps can be expressed in terms of $x(z)$ and $y(z)$
$=$ "spectral curve".

## Generating series of slices



Type A / B slice with base of length $p$ and inclination $k$


The generating series of slices with base of length $p$ and inclination $k$ is given by:

$$
\left[z^{k}\right] x(z)^{p} \text { for type A, and } \quad\left[z^{k}\right] y(z)^{p} \text { for type B. }
$$

Why does this help ?? Decomposition of elementary slices


Why does this help ?? Decomposition of elementary slices


## Why does this help ?? Decomposition of elementary slices



The generating series of elementary slices are uniquely determined by the following recursive system of equations:

$$
\begin{array}{r}
a_{k}=t \delta_{k, 1}+\sum_{d \geq 1} t_{d}^{\bullet}\left[z^{k}\right] y(z)^{d-1} \quad \text { for } k \leq 1 \\
b_{-1}=1 \quad \text { and } \quad b_{k}=\sum_{d \geq 1} t_{d}^{0}\left[z^{k}\right] x(z)^{d-1} \quad \text { for } k \geq 0
\end{array}
$$

## Why does this help ?? Decomposition of elementary slices



The generating series of elementary slices are uniquely determined by the following recursive system of equations:

$$
\begin{array}{r}
a_{k}=t \delta_{k, 1}+\sum_{d \geq 1} t_{d}^{\bullet}\left[z^{k}\right] y(z)^{d-1} \quad \text { for } k \leq 1 \\
b_{-1}=1 \quad \text { and } \quad b_{k}=\sum_{d \geq 1} t_{d}^{\circ}\left[z^{k}\right] x(z)^{d-1} \quad \text { for } k \geq 0
\end{array}
$$

$\rightarrow$ This system is algebraic when the degree of the faces are assumed to be bounded (i.e. $t_{k}^{\circ}=t_{k}^{\bullet}=0$ for large $k$ ).
$\rightarrow$ Same system of equations as [Bousquet-Mélou, Schaeffer 02] + the system of [Bouttier,
Di Francesco, Guitter 04] can be recovered using an additional combinatorial construction.

## Coming back to pointed disks



Pointed Disks white / black root face
weight-preserving



Slice with 0 inclination type A / type B

## Coming back to pointed disks



Pointed Disks white / black root face
weight-preserving
4 bijection

Slice with 0 inclination type A / type B
$F_{p}^{\circ}, F_{p}^{\bullet}:=$ generating series of hypermaps with a monochromatic white (resp. black) boundary of degree $p$.
We have:

$$
\frac{d}{d t} F_{p}^{\circ}=\left[z^{0}\right] x(z)^{p}, \quad \text { resp. } \frac{d}{d t} F_{p}^{\bullet}=\left[z^{0}\right] y(z)^{p}
$$

Two boundaries: trumpets and slices with increment $\neq 0$


Slice with increment $<0$.

Two boundaries: trumpets and slices with increment $\neq 0$


Slice with increment $<0$.

## Two boundaries: trumpets and slices with increment $\neq 0$

Trumpet: Hypermap with 2 monochromatic boundaries: one rooted and one strictly tight

$:=$ The boundary of the tight face is the unique shortest separating cycle between both boundaries.


Slice with increment $<0$.

## Two boundaries: trumpets and slices with increment $\neq 0$

Trumpet: Hypermap with 2 monochromatic boundaries: one rooted and one strictly tight

$:=$ The boundary of the tight face is the unique shortest separating cycle between both boundaries.


Slice with increment $<0$.

## Two boundaries: trumpets and slices with increment $\neq 0$

Trumpet: Hypermap with 2 monochromatic boundaries: one rooted and one strictly tight

$:=$ The boundary of the tight face is the unique shortest separating cycle between both boundaries.


Slice with increment $<0$.

## Two boundaries: trumpets and slices with increment $\neq 0$

Trumpet: Hypermap with 2 monochromatic boundaries: one rooted and one strictly tight

$:=$ The boundary of the tight face is the unique shortest separating cycle between both boundaries.

Slice with increment $<0$.

Remark: Similar result for slices with increment $>0$ and trumpets with a tight face.

## Two monochromatic boundaries: general case

An hypermap with two monochromatic boundaries can be decomposed along the "most-inside" shortest separating cycle: we get a pair of trumpets (one strict and the other not).


## Two monochromatic boundaries: general case

An hypermap with two monochromatic boundaries can be decomposed along the "most-inside" shortest separating cycle: we get a pair of trumpets (one strict and the other not).


## Two monochromatic boundaries: general case

An hypermap with two monochromatic boundaries can be decomposed along the "most-inside" shortest separating cycle: we get a pair of trumpets (one strict and the other not).


## Two monochromatic boundaries: general case

An hypermap with two monochromatic boundaries can be decomposed along the "most-inside" shortest separating cycle: we get a pair of trumpets (one strict and the other not).


The generating series of hypermaps with two monochromatic boundaries are given by:

$$
\begin{array}{ll}
F_{p, q}^{\circ \circ}=\sum_{h \geq 1} h\left(\left[z^{h}\right] x(z)^{p}\right)\left(\left[z^{-h}\right] x(z)^{q}\right), & F_{p, q}^{\circ \bullet}=\sum_{h \geq 1} h\left(\left[z^{h}\right] x(z)^{p}\right)\left(\left[z^{-h}\right] y(z)^{q}\right), \\
F_{p, q}^{\bullet \bullet}=\sum_{h \geq 1} h\left(\left[z^{h}\right] y(z)^{p}\right)\left(\left[z^{-h}\right] y(z)^{q}\right), & F_{p, q}^{\bullet \bullet}=\sum_{h \geq 1} h\left(\left[z^{h}\right] y(z)^{p}\right)\left(\left[z^{-h}\right] x(z)^{q}\right) .
\end{array}
$$

## One more result and a conclusion:

Generating series of hypermaps with a Dobrushin boundary condition:


## One more result and a conclusion:

Generating series of hypermaps with a Dobrushin boundary condition:


## One more result and a conclusion:

Generating series of hypermaps with a Dobrushin boundary condition:


We gave bijective derivation of enumerative formulas for hypermaps with one or two boundaries.

But even more mysterious formulas are available - for hypermaps with more boundaries or with any boundary conditions - which still lack a bijective derivation.

## One more result and a conclusion:

Generating series of hypermaps with a Dobrushin boundary condition:


We gave bijective derivation of enumerative formulas for hypermaps with one or two boundaries.

But even more mysterious formulas are available - for hypermaps with more boundaries or with any boundary conditions - which still lack a bijective derivation.

To be followed...

