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How ? By extending to hypermaps the method of slice decomposition introduced in
[Bouttier, Guitter 2010].
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Elementary slice: slice with a base of length 1.
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We combine all these quantities into two Laurent series:

Main result:
= Z akzk, y(z) := Z bez”.| All generating series of discussed hypermaps can
k<1 k>—1 be expressed in terms of x(z) and y(z)

— "“spectral curve”.



Generating series of slices

weight-preserving
Type A / B slice with bijection p—tuple of type A/B elementary slices
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base of length p and inclination & s.t. sum of inclinations = k

The generating series of slices with base of length p and inclination k is given by:

[2Fz(2)P for type A, and 2y (2)P for type B.
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Xty

The generating series of elementary slices are uniquely determined by the following
recursive system of equations:

ap = tékjl—l—Zt:l[zk]y(z)d_l for k <1

d>1

b_1 =1 and by :thi[zk]a;(z)d_l for K >0

d>1

— This system is algebraic when the degree of the faces are assumed to be bounded
(i.e. ty =t =0 for large k).

— Same system of equations as [Bousquet-Mélou, Schaeffer 02] + the system of [Bouttier,
Di Francesco, Guitter 04] can be recovered using an additional combinatorial construction.
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- weight-preserving

Pointed Disks bijection Slice with 0 inclination
white / black root face type A / type B

F;, F, = generating series of hypermaps with a monochromatic white (resp. black)
boundary of degree p.

We have: p
EF; = [2°]z(2)?, resp. —F, = [z
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Trumpet : Hypermap with 2 - Slice with
monochromatic boundaries: one Increment < 0.
rooted and one strictly tight

Bijection
<<—DD>>
2]

:= The boundary of the tight face
is the unique shortest separating
cycle between both boundaries.

ketch of pro

Remark: Similar result for slices with increment > 0 and trumpets with a tight face.

T

:= The boundary of the tight face is among
the shortest separating cycle between both
boundaries.
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The generating series of hypermaps with two monochromatic boundaries are given by:
Foo=> b (["2(2)7) ("2(2)7) B =Y b (")) (17" w(2)7).
Fot =S b (")) (E7"w=)0) B =0k (["w2)?) (72 (2)7)
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To be followed... THANK YQOU !



