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one boundary with Dobrushin condition

How ? By extending to hypermaps the method of slice decomposition introduced in
[Bouttier, Guitter 2010].
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Why does this help ? Decomposition of slices

Slices can be further decomposed into “elementary slices”:

weight of a slice: w̄(s) := t|vertices of s not incident to the right boundary|
∏

f∈F◦
inn

t◦deg(f)
∏

f∈F•
inn

t•deg(f)

Elementary slice: slice with a base of length 1.
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For k ∈ Z, ak, bk := generating series of elementary slices of type A/B and inclination k.

type A
inclination = −1

type B
inclination = 0

type A
inclination = 1

type B
inclination = −1

First properties : • ak = b−k = 0 for k > 1.

First properties : • b−1 = 1

We combine all these quantities into two Laurent series:

x(z) :=
∑
k≤1

akz
k, y(z) :=

∑
k≥−1

bkz
k.

Main result:
All generating series of discussed hypermaps can
be expressed in terms of x(z) and y(z)
= “spectral curve”.



Generating series of slices

Type A / B slice with
base of length p and inclination k

p−tuple of type A/B elementary slices
s.t. sum of inclinations = k

weight-preserving
bijection

The generating series of slices with base of length p and inclination k is given by:

[zk]x(z)p for type A, and [zk]y(z)p for type B.
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Why does this help ?? Decomposition of elementary slices

×t◦4

→ This system is algebraic when the degree of the faces are assumed to be bounded
(i.e. t◦k = t•k = 0 for large k).

The generating series of elementary slices are uniquely determined by the following
recursive system of equations:

ak = tδk,1+
∑
d≥1

t•d[zk]y(z)d−1 for k ≤ 1

b−1 = 1 and bk =
∑
d≥1

t◦d[zk]x(z)d−1 for k ≥ 0

→ Same system of equations as [Bousquet-Mélou, Schaeffer 02] + the system of [Bouttier,
Di Francesco, Guitter 04] can be recovered using an additional combinatorial construction.
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Coming back to pointed disks

F ◦p , F
•
p := generating series of hypermaps with a monochromatic white (resp. black)

boundary of degree p.

We have:
d

dt
F ◦p = [z0]x(z)p, resp.

d

dt
F •p = [z0]y(z)p.
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Two boundaries: trumpets and slices with increment 6= 0

Slice with
increment < 0.

Trumpet : Hypermap with 2
monochromatic boundaries: one
rooted and one strictly tight

Bijection

Sketch of proof:

Remark: Similar result for slices with increment > 0 and trumpets with a tight face.

:= The boundary of the tight face is among
the shortest separating cycle between both
boundaries.

:= The boundary of the tight face
is the unique shortest separating
cycle between both boundaries.
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Two monochromatic boundaries: general case

An hypermap with two monochromatic boundaries can be decomposed along the “most-inside”
shortest separating cycle: we get a pair of trumpets (one strict and the other not).

The generating series of hypermaps with two monochromatic boundaries are given by:

F ◦◦p,q =
∑
h≥1

h
(

[zh]x(z)p
)(

[z−h]x(z)q
)
, F ◦•p,q =

∑
h≥1

h
(

[zh]x(z)p
)(

[z−h]y(z)q
)
,

F ••p,q =
∑
h≥1

h
(

[zh]y(z)p
)(

[z−h]y(z)q
)
, F •◦p,q =

∑
h≥1

h
(

[zh]y(z)p
)(

[z−h]x(z)q
)
.

Trumpet Strict trumpet

,
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h
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x
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One more result and a conclusion:

Generating series of hypermaps with a Dobrushin boundary condition:

p

q

We gave bijective derivation of enumerative formulas for hypermaps with one or two
boundaries.

But even more mysterious formulas are available – for hypermaps with more boundaries or
with any boundary conditions – which still lack a bijective derivation.

To be followed... THANK YOU !
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