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The goal of the first two exercises is to construct the BV and BFV action for a simple example,
one-dimensional gravity (a theory classically equivalent to classical mechanics [Bonus exercise: Can
you show this as well?]).

Exercise 1. The action of one-dimensional gravity is

S[q, g] :=

∫ b

a

(
1
√
g
T (q̇)−√

gV (q) +
√
gE

)
dt, (1)

where the fields are q : [a, b] → U and g : [a, b] → R>0 for U ⊂ Rn an open subset.

1. Compute the variation of the action (1).

2. From the variation of the action extract the Euler–Lagrange equations and verify that the
resulting 1-form is

α̌ =
∑
i

mq̇i
√
g
dqi.

3. Introducing pi := mq̇i/
√
g, verify that the space of boundary fields F ∂ is given by (two copies

of) T ∗U with canonical symplectic form.

4. Rewrite the EL equations in terms of the new variables and identify the evolution equations
and the constraints. Then write the reduced phase space as a quotient.

Exercise 2. Let ξ ∈ Γ[1](TU), i.e. a shifted vector field parametrizing reparametrization of the
theory (i.e 1d diffeomorphisms). Define the BV operator Q as follows:

Qq = ξq̇ Qg = ξġ + 2gξ̇ Qξ = ξξ̇.

1. Verify that Q2 = 1
2 [Q,Q] = 0 and that QS = 0 up to boundary terms.

Let now

ωBV =

∫ b

a

(∑
i

δq+i δq
i + δg+δg + δξ+δξ

)
dt.

be the BV symplectic form, where q+, g+ and ξ+ are the antifields of q, g and ξ respectively and
let the BV action be

S[q, q+, g, g+, ξ, ξ+] = S[q, g] +

∫ b

a

(∑
i

q+i ξq̇
i + g+(ξġ + 2gξ̇)− ξ+ξξ̇

)
dt.



2. Find Qq+ Qg+ and Qξ+ such that ιQδωBV− δS is a boundary term. Verify that the resulting
boundary term is

α̌ =

(
mq̇
√
g
+ q+ξ

)
· dq + g+ξdg + (ξ+ξ − 2g+g)dξ.

3. Compute ω̌ = δα̌ and find its kernel.

It is possible to see that the reduced space of boundary fields F∂ can be identified with T ∗(Rn×R[1])
with base coordinates q, c and fiber coordinates p, b and canonical 1-form α∂ = p · dq + bdc. The
projection map is defined by

p =
mq̇
√
g
+ q+ξ,

b =
1
√
g
(ξ+ξ − 2g+g),

c =
√
g ξ.

(2)

Let now E = ξ ∂∂ξ − 2ξ+ ∂
∂ξ+

− g+ ∂
∂g+

−
∑

i q
+
i

∂
∂q+i

.

4. Using the results of point 2, compute Š = ιQιEω̌.

5. Deduce that Š is the pullback along the projection (2) of

S∂ =

(
||p||2

2m
+ V (q)− E

)
c.

Exercise 3. In this exercise we show how it is possible to define the BV-Laplacian using odd Fourier
transforms. Let M be an n-dimensional manifold and fix a volume form

Vol = ρdx1 ∧ · · · ∧ dxn.

Let also T [1]M be its graded tangent bundle, with coordinate xµ of degree 0 on the base and ξµ of
degree 1 on the fiber and let D = ξµ ∂

∂xµ be a degree 1 vector field.

1. Observe that D2 = 0.

Let now f = f(x, ξ) ∈ C∞(T [1]M) and define the odd Fourier tranform of f as the function on
C∞(T ∗[−1]M) defined by

F [f ](x, ψ) =

∫
dnξρ−1eψµξµf(x, ξ).

where ψµ are coordinates of degree -1 and ρ is a fixed volume form. Define also

F−1[f̃ ](x, ξ) = (−1)n(n+1)/2

∫
dnψρe−ψµξµ f̃(x, ψ).

2. Prove that F−1[F [f ]] = f .



3. Prove that there exists an operator ∆ such that

F [Df ] = (−1)n∆F [f ]

and its explicit coordinate expression is

∆ = ρ−1 ∂2

∂ψµ∂xµ
ρ.

4. Prove that ∆ is a BV-Laplacian, i.e. show that ∆(fg) = (∆f)g+(−1)deg(f)f(∆g)+(−1)deg(f){f, g},
where {·, ·} is the BV bracket, defined as

f, g = −(−1)deg(f)
∂

∂ξµ
f
∂

∂xµ
g +

∂

∂xµ
f
∂

∂ξµ
g

for every function f, g ∈ C∞(T [1]M).


