Effective BV quantisation of Gravity with and without boundary

Exercise Sheet 11.05.2023

The goal of the first two exercises is to construct the BV and BFV action for a simple example, one-dimensional gravity (a theory classically equivalent to classical mechanics [Bonus exercise: Can you show this as well?]).

Exercise 1. The action of one-dimensional gravity is

$$
\begin{equation*}
S[q, g]:=\int_{a}^{b}\left(\frac{1}{\sqrt{g}} T(\dot{q})-\sqrt{g} V(q)+\sqrt{g} E\right) \mathrm{d} t, \tag{1}
\end{equation*}
$$

where the fields are $q:[a, b] \rightarrow U$ and $g:[a, b] \rightarrow \mathbb{R}_{>0}$ for $U \subset \mathbb{R}^{n}$ an open subset.

1. Compute the variation of the action (1).
2. From the variation of the action extract the Euler-Lagrange equations and verify that the resulting 1 -form is

$$
\check{\alpha}=\sum_{i} \frac{m \dot{q}^{i}}{\sqrt{g}} \mathrm{~d} q^{i} .
$$

3. Introducing $p_{i}:=m \dot{q}^{i} / \sqrt{g}$, verify that the space of boundary fields F^{∂} is given by (two copies of) $T^{*} U$ with canonical symplectic form.
4. Rewrite the EL equations in terms of the new variables and identify the evolution equations and the constraints. Then write the reduced phase space as a quotient.

Exercise 2. Let $\xi \in \Gamma[1](T U)$, i.e. a shifted vector field parametrizing reparametrization of the theory (i.e $1 d$ diffeomorphisms). Define the BV operator Q as follows:

$$
Q q=\xi \dot{q} \quad Q g=\xi \dot{g}+2 g \dot{\xi} \quad Q \xi=\xi \dot{\xi}
$$

1. Verify that $Q^{2}=\frac{1}{2}[Q, Q]=0$ and that $Q S=0$ up to boundary terms.

Let now

$$
\omega_{\mathrm{BV}}=\int_{a}^{b}\left(\sum_{i} \delta q_{i}^{+} \delta q^{i}+\delta g^{+} \delta g+\delta \xi^{+} \delta \xi\right) \mathrm{d} t
$$

be the BV symplectic form, where q^{+}, g^{+}and ξ^{+}are the antifields of q, g and ξ respectively and let the BV action be

$$
\mathcal{S}\left[q, q^{+}, g, g^{+}, \xi, \xi^{+}\right]=S[q, g]+\int_{a}^{b}\left(\sum_{i} q_{i}^{+} \xi \dot{q}^{i}+g^{+}(\xi \dot{g}+2 g \dot{\xi})-\xi^{+} \xi \dot{\xi}\right) \mathrm{d} t .
$$

2. Find $Q q^{+} Q g^{+}$and $Q \xi^{+}$such that $\iota_{Q} \delta \omega_{\mathrm{BV}}-\delta \mathcal{S}$ is a boundary term. Verify that the resulting boundary term is

$$
\check{\alpha}=\left(\frac{m \dot{q}}{\sqrt{g}}+q^{+} \xi\right) \cdot \mathrm{d} q+g^{+} \xi \mathrm{d} g+\left(\xi^{+} \xi-2 g^{+} g\right) \mathrm{d} \xi .
$$

3. Compute $\check{\omega}=\delta \check{\alpha}$ and find its kernel.

It is possible to see that the reduced space of boundary fields \mathcal{F}^{∂} can be identified with $T^{*}\left(\mathbb{R}^{n} \times \mathbb{R}[1]\right)$ with base coordinates q, c and fiber coordinates p, b and canonical 1-form $\alpha^{\partial}=p \cdot \mathrm{~d} q+b \mathrm{~d} c$. The projection map is defined by

$$
\begin{align*}
p & =\frac{m \dot{q}}{\sqrt{g}}+q^{+} \xi, \\
b & =\frac{1}{\sqrt{g}}\left(\xi^{+} \xi-2 g^{+} g\right), \tag{2}\\
c & =\sqrt{g} \xi .
\end{align*}
$$

Let now $E=\xi \frac{\partial}{\partial \xi}-2 \xi^{+} \frac{\partial}{\partial \xi^{+}}-g^{+} \frac{\partial}{\partial g^{+}}-\sum_{i} q_{i}^{+} \frac{\partial}{\partial q_{i}^{+}}$.
4. Using the results of point 2, compute $\check{S}=\iota_{Q} \iota_{E} \check{\omega}$.
5. Deduce that \check{S} is the pullback along the projection (2) of

$$
S^{\partial}=\left(\frac{\|p\|^{2}}{2 m}+V(q)-E\right) c .
$$

Exercise 3. In this exercise we show how it is possible to define the BV-Laplacian using odd Fourier transforms. Let M be an n-dimensional manifold and fix a volume form

$$
\mathrm{Vol}=\rho d x^{1} \wedge \cdots \wedge d x^{n} .
$$

Let also $T[1] M$ be its graded tangent bundle, with coordinate x^{μ} of degree 0 on the base and ξ^{μ} of degree 1 on the fiber and let $D=\xi^{\mu} \frac{\partial}{\partial x^{\mu}}$ be a degree 1 vector field.

1. Observe that $D^{2}=0$.

Let now $f=f(x, \xi) \in C^{\infty}(T[1] M)$ and define the odd Fourier tranform of f as the function on $C^{\infty}\left(T^{*}[-1] M\right)$ defined by

$$
F[f](x, \psi)=\int d^{n} \xi \rho^{-1} e^{\psi_{\mu} \xi^{\mu}} f(x, \xi)
$$

where ψ^{μ} are coordinates of degree -1 and ρ is a fixed volume form. Define also

$$
F^{-1}[\widetilde{f}](x, \xi)=(-1)^{n(n+1) / 2} \int d^{n} \psi \rho e^{-\psi_{\mu} \xi^{\mu}} \widetilde{f}(x, \psi) .
$$

2. Prove that $F^{-1}[F[f]]=f$.
3. Prove that there exists an operator Δ such that

$$
F[D f]=(-1)^{n} \Delta F[f]
$$

and its explicit coordinate expression is

$$
\Delta=\rho^{-1} \frac{\partial^{2}}{\partial \psi_{\mu} \partial x^{\mu}} \rho .
$$

4. Prove that Δ is a BV-Laplacian, i.e. show that $\Delta(f g)=(\Delta f) g+(-1)^{\operatorname{deg}(f)} f(\Delta g)+(-1)^{\operatorname{deg}(f)}\{f, g\}$, where $\{\cdot, \cdot\}$ is the BV bracket, defined as

$$
f, g=-(-1)^{\operatorname{deg}(f)} \frac{\partial}{\partial \xi^{\mu}} f \frac{\partial}{\partial x^{\mu}} g+\frac{\partial}{\partial x^{\mu}} f \frac{\partial}{\partial \xi^{\mu}} g
$$

for every function $f, g \in C^{\infty}(T[1] M)$.

