BFV data for EH gravity

Michele Schiavina, University of Pavia

Einstein-Hilbert gravity

BFV data

For $\phi \in C^{\infty}(\Sigma)$ and $X \in \mathfrak{X}(\Sigma)$, we have the constraint functions
$\mathbb{H}_{n}(\phi):=\int_{\Sigma}\left\{\frac{1}{\operatorname{vol}_{h}}\left(\operatorname{Tr}_{h}\left[\Pi^{2}\right]-\frac{1}{d-1}\left[\operatorname{Tr}_{h} \Pi\right]^{2}\right)+\operatorname{vol}_{h} R(h)\right\} \phi, \quad H_{\partial}(X):=\int_{\Sigma}\left\langle\Pi, \mathcal{L}_{X} h\right\rangle$.
BFV fields: $\mathcal{F}_{E H}^{(1)}:=T^{*}\left(\mathcal{R}(\Sigma) \times \mathfrak{X}[1](\Sigma) \times C^{\infty}[1](\Sigma)\right) \ni\left(h, \Pi, \xi^{n}, \xi^{\partial}, \chi_{n}, \chi_{\partial}\right)$, with $\xi^{n} \in C^{\infty}[1](\Sigma), \xi^{\partial} \in \mathfrak{X}[1](\Sigma)$,
and $\chi_{n} \in C^{\infty}[-1](\Sigma) \otimes \operatorname{Dens}(\Sigma), \chi_{\partial} \in \Omega^{1}[-1](\Sigma) \otimes \operatorname{Dens}(\Sigma)$.

$$
\mathcal{S}_{E H}^{(1)}=\mathbb{H}_{n}\left(\xi^{n}\right)+\mathbb{H}_{\partial}\left(\xi^{\partial}\right)+\int_{\Sigma} \chi_{n} \mathcal{L}_{\xi^{\partial}} \xi^{n}+\left\langle\chi_{\partial}, \xi^{n} \operatorname{grad}_{h} \xi^{n}\right\rangle+\frac{1}{2}\left\langle\chi_{\partial},\left[\xi^{\partial}, \xi^{\partial}\right]\right\rangle .
$$

BFV operator reads:

$$
\begin{aligned}
Q\left(\xi^{n}\right)=\mathcal{L}_{\xi^{\partial}} \xi^{n}, & Q\left(\xi^{\partial}\right)=\xi^{n} \operatorname{grad}_{h} \xi^{n}+\frac{1}{2}\left[\xi^{\partial}, \xi^{\partial}\right] \\
Q(h)=\frac{\delta H_{n}\left(\xi^{n}\right)}{\delta \Pi}-\mathcal{L}_{\xi^{\partial}} h, & Q(\Pi)=-\frac{\delta H_{n}\left(\xi^{n}\right)}{\delta h}-\mathcal{L}_{\xi^{\partial}} \Pi-\left(\chi_{\partial} \otimes_{s} d \xi^{n}\right)^{\sharp \sharp} \xi^{n} \\
Q\left(\chi_{\partial}\right)=\frac{\delta H_{\partial}\left(\xi^{\partial}\right)}{\delta \xi^{\partial}}+\mathcal{L}_{\xi^{\partial}} \chi_{\partial}-\chi_{n} d \xi^{n}, & Q\left(\chi_{n}\right)=\frac{\delta H_{n}\left(\xi^{n}\right)}{\delta \xi^{n}}+\mathcal{L}_{\xi^{\partial} \partial \chi_{n}-2 \mathcal{L}_{\chi^{\sharp}}\left(\xi^{n} \operatorname{vol}_{h}^{-\frac{1}{2}}\right) \operatorname{vol}_{h}^{\frac{1}{2}},},
\end{aligned}
$$

Einstein-Hilbert gravity

Observations

The Q manifold $\left(\mathcal{F}_{E H}^{(1)}, Q_{E H}^{(1)}\right)$ defines an L_{∞}-algebroid:

$$
\mathcal{F}_{E H}^{(1)} \rightarrow \underbrace{T^{*} \mathcal{R}(\Sigma)}_{(h, \Pi)} \times \underbrace{\Omega^{1}[-1](\Sigma) \otimes \operatorname{Dens}(\Sigma)}_{\chi_{\partial}} \times \underbrace{C^{\infty}[-1](\Sigma) \otimes \operatorname{Dens}(\Sigma)}_{\chi_{n}}
$$

Resolution of the coisotropic locus of constraints $C_{E H}=\left\{H_{n}(\phi)=H_{\partial}(X)=0\right\} \subset T^{*} \mathcal{R}(\Sigma)$ [ADM, deWitt, \ldots]. $Q_{E H}^{(1)}$ not "sum" of Lie algebroid differential \& Koszul differential! Due to multianchor term. $Q_{E H}^{(1)}$ defines ternary brackets on sections, which vanish only on constant sections but not on field-dependent gauge transformations.

Different from (most) gauge theories! Algebroid only on-shell. Hamiltonian system with on shell symmetries. Momentum map?

L_{∞} structure

Quadratic dependency in the fibres due to the term $\left(\chi_{\partial} \otimes_{s} d \xi^{n}\right)^{\sharp \sharp} \xi^{n}$, Multi-anchor map, which vanishes constant sections except:

$$
\begin{equation*}
\rho^{(2)}\left(\left(f_{1}, X_{1}\right),\left(f_{2}, X_{2}\right)\right)(\Pi)=\chi_{\partial}^{\sharp} \otimes_{s}\left(f_{1} \operatorname{grad}_{h} f_{2}-f_{2} \operatorname{grad}_{h} f_{1}\right), \tag{1a}
\end{equation*}
$$

Multianchors require higher brackets. However, no cubic terms in the ξ variables in $Q_{B F V}^{E H} . \Rightarrow$ no higher brackets on constant sections.
From the defining Leibniz rule for three-brackets in L_{∞} algebroids, denoting constant sections by s_{i}, we get that

$$
\left[s_{1}, s_{2}, f s_{3}\right]_{(3)}=\rho^{(2)}\left(s_{1}, s_{2}\right)(f) s_{3}+f\left[s_{1}, s_{2}, s_{3}\right]=\rho^{(2)}\left(s_{1}, s_{2}\right)(f) s_{3}
$$

Three-brackets vanish only on constant sections.
Jacobi identity on shell!
Akin to action algebroid for an abelian Lie algebra \mathfrak{g}. Here, the bracket of constant sections is zero. On the other hand, unless the action is trivial, the bracket is not identically zero on nonconstant sections.

